
Rockcraft
Release 1.3.1

Canonical Ltd.

Apr 23, 2024

CONTENTS

1 Tutorials 3

2 How-to guides 13

3 Reference 41

4 Explanation 71

5 Project and community 91

i

ii

Rockcraft, Release 1.3.1

Rockcraft is a tool to create rocks – a new generation of secure, stable and OCI-compliant container images, based
on Ubuntu.

Rockcraft is for anyone who wants to build production-grade container images, regardless of their experience as
a software developer – from independent software vendors to cloud-native developers and occasional container users.
Rockcraft handles all the repetitive and boilerplate steps of a build, directing your focus to what really matters: the
image’s content.

Using the same language as Snapcraft and Charmcraft, Rockcraft offers a truly declarative way for building
efficient container images. By making use of existing Ubuntu tools like LXD and Multipass, Rockcraft is able to
compartmentalise typical container image builds into multiple parts, each one being comprised of several independent
lifecycle steps, allowing complex operations to be declared at build time.

CONTENTS 1

https://github.com/opencontainers/image-spec/blob/main/spec.md
https://linuxcontainers.org/lxd/docs/latest/
https://multipass.run/docs

Rockcraft, Release 1.3.1

2 CONTENTS

CHAPTER

ONE

TUTORIALS

If you want to learn the basics from experience, then our tutorials will help you acquire the necessary competencies
from real-life examples with fully reproducible steps.

The first tutorials will familiarise you with the basic operations, tools and workflows for packing rocks.

1.1 Create a “Hello World” rock

1.1.1 Prerequisites

• snap enabled system (https://snapcraft.io)

• LXD installed (https://linuxcontainers.org/lxd/getting-started-cli/)

• skopeo installed (https://github.com/containers/skopeo)

• Docker installed (https://snapcraft.io/docker)

• a text editor

1.1.2 Install Rockcraft

Install Rockcraft on your host:

sudo snap install rockcraft --classic

1.1.3 Project Setup

Create a new directory and write the following into a text editor and save it as rockcraft.yaml:

Metadata section

name: hello
summary: Hello World
description: The most basic example of a rock.
version: "latest"
license: Apache-2.0

base: bare
build-base: ubuntu@22.04

(continues on next page)

3

https://snapcraft.io
https://linuxcontainers.org/lxd/getting-started-cli/
https://github.com/containers/skopeo
https://snapcraft.io/docker

Rockcraft, Release 1.3.1

(continued from previous page)

platforms:
amd64: # Make sure this value matches your computer's architecture

Parts section

parts:
hello:
plugin: nil
stage-packages:
- hello

This file instructs Rockcraft to build a rock that only has the hello package (and its dependencies) inside. For more
information about the parts section, check Part properties. The remaining YAML fields correspond to metadata that
help define and describe the rock. For more information about all available fields check rockcraft.yaml.

1.1.4 Pack the rock with Rockcraft

To build the rock, run:

rockcraft pack

The output should look as follows:

Launching instance...
Retrieved base bare for amd64
Extracted bare:latest
Executed: pull hello
Executed: pull pebble
Executed: overlay hello
Executed: overlay pebble
Executed: build hello
Executed: build pebble
Executed: stage hello
Executed: stage pebble
Executed: prime hello
Executed: prime pebble
Executed parts lifecycle
Exported to OCI archive 'hello_latest_amd64.rock'

At the end of the process, a file named hello_latest_amd64.rock should be present in the current directory. That’s
your rock, in oci-archive format (a tarball).

4 Chapter 1. Tutorials

Rockcraft, Release 1.3.1

1.1.5 Run the rock in Docker

First, import the recently created rock into Docker:

sudo /snap/rockcraft/current/bin/skopeo --insecure-policy copy oci-archive:hello_latest_
→˓amd64.rock docker-daemon:hello:latest

Now run the hello command from the rock:

docker run --rm hello:latest exec hello -t

Which should print:

hello, world

1.2 Install slices in a rock

In this tutorial, you will create a lean hello-world rock that uses chisel slices, and then compare the resulting rock with
the one created without slices in Create a “Hello World” rock.

1.2.1 Prerequisites

• snap enabled system (https://snapcraft.io)

• LXD installed (https://linuxcontainers.org/lxd/getting-started-cli/)

• skopeo installed (https://github.com/containers/skopeo)

• Docker installed (https://docs.docker.com/get-docker/)

• a text editor

1.2.2 Install Rockcraft

Install Rockcraft on your host:

snap install rockcraft --classic

1.2.3 Project Setup

Create a new directory, write the following into a text editor and save it as rockcraft.yaml:

name: chiselled-hello
summary: Hello world from Chisel slices
description: A "bare" rock containing the "hello" package binaries from Chisel slices.
license: Apache-2.0

version: "latest"
base: bare
build_base: "ubuntu@22.04"
platforms:

(continues on next page)

1.2. Install slices in a rock 5

https://snapcraft.io
https://linuxcontainers.org/lxd/getting-started-cli/
https://github.com/containers/skopeo
https://docs.docker.com/get-docker/

Rockcraft, Release 1.3.1

(continued from previous page)

amd64:

parts:
hello:
plugin: nil
stage-packages:
- hello_bins

Note that this Rockcraft file uses the hello_binsChisel slice to generate an image containing only files that are strictly
necessary for the hello binary. See Chisel for details on the Chisel tool.

1.2.4 Pack the rock with Rockcraft

To build the rock, run:

rockcraft pack

The output will look similar to:

Launching instance...
Retrieved base bare for amd64
Extracted bare:latest
Executed: pull hello
Executed: overlay hello
Executed: build hello
Executed: stage hello
Executed: prime hello
Executed parts lifecycle
Exported to OCI archive 'chiselled-hello_latest_amd64.rock'

The process might take a little while, but at the end, a new file named chiselled-hello_latest_amd64.rock will
be present in the current directory. That’s your chiselled-hello rock, in oci-archive format.

1.2.5 Run the rock in Docker

First, import the recently created rock into Docker:

sudo /snap/rockcraft/current/bin/skopeo --insecure-policy copy oci-archive:chiselled-
→˓hello_latest_amd64.rock docker-daemon:chiselled-hello:latest

Now you can run a container from the rock:

docker run --rm chiselled-hello:latest exec hello -t

Which should print:

hello, world

The chiselled-hello image will have a size of 5.6 MB, which is much less in size than the 8.8 MB hello rock
created in Create a “Hello World” rock.

The next tutorials walk you through examples of transforming applications source code into container applications:

6 Chapter 1. Tutorials

Rockcraft, Release 1.3.1

1.3 Containerise a PyPI package

By the end of this tutorial you will be able to run pyfiglet via docker:

$ docker run --rm -it pyfiglet:0.7.6 exec pyfiglet hello
_ _ _
| |__ ___| | | ___
| '_ \ / _ \ | |/ _ \
| | | | __/ | | (_) |
|_| |_|___|_|_|___/

1.3.1 Prerequisites

• snap enabled system (https://snapcraft.io)

• LXD installed (https://linuxcontainers.org/lxd/getting-started-cli/)

• skopeo installed (https://github.com/containers/skopeo). Skopeo will also be automatically installed as a Rock-
craft dependency

• Docker installed (https://snapcraft.io/docker)

• Rockcraft installed

• a text editor

1.3.2 Project Setup

To create a new Rockcraft project, create a new directory and change into it:

mkdir pyfiglet-rock && cd pyfiglet-rock

Next, create a file called rockcraft.yaml with the following contents:

name: pyfiglet
base: ubuntu@22.04
version: '0.7.6' # Note: should match `pyfiglet` below
summary: A rock for pyfiglet
description: A rock for pyfiglet
license: Apache-2.0
platforms:
amd64:

parts:
pyfiglet:
plugin: python
source: .
python-packages:
- pyfiglet==0.7.6 # Note: should match `version` above

stage-packages:
- python3-venv

1.3. Containerise a PyPI package 7

https://snapcraft.io
https://linuxcontainers.org/lxd/getting-started-cli/
https://github.com/containers/skopeo
https://snapcraft.io/docker

Rockcraft, Release 1.3.1

1.3.3 Pack the rock with Rockcraft

To build the rock, run:

rockcraft pack

1.3.4 Run the rock in Docker

First, import the recently created rock into Docker:

sudo /snap/rockcraft/current/bin/skopeo --insecure-policy copy oci-archive:pyfiglet_0.7.
→˓6_amd64.rock docker-daemon:pyfiglet:0.7.6

Now run the pyfiglet command from the rock:

docker run --rm pyfiglet:0.7.6 exec pyfiglet it works!

Which should print:

_ _ _ _
(_) |_ __ _____ _ __| | _____| |
| | __| \ \ /\ / / _ \| '__| |/ / __| |
| | |_ \ V V / (_) | | | <__ _|
|_|__| _/_/ ___/|_| |_|____(_)

1.3.5 Explore the running container

Since the rock uses an ubuntu base, you can poke around in a running container using bash, via:

$ docker run --rm -it pyfiglet:0.7.6 exec bash
root@14d1812a2681:/# pyfiglet hi
_ _
| |__ (_)
'_ \|			
_		_	_

1.4 Bundle a Node.js app within a rock

This tutorial describes the steps needed to bundle a typical Node.js application into a rock.

8 Chapter 1. Tutorials

Rockcraft, Release 1.3.1

1.4.1 Prerequisites

• snap enabled system (https://snapcraft.io/docs/installing-snapd)

• LXD installed (https://documentation.ubuntu.com/lxd/en/latest/installing/)

• Docker installed (https://snapcraft.io/docker)

• a text editor

1.4.2 Install Rockcraft

Install Rockcraft on your host:

sudo snap install rockcraft --classic

1.4.3 Project Setup

Starting in an empty folder, create a src/ subdirectory. Inside it, add two files:

The first one is the package.json listing of dependencies, with the following contents:

Listing 1: package.json

{
"name": "node_web_app",
"version": "1.0.0",
"description": "Node.js on a rock",
"author": "First Last <first.last@example.com>",
"main": "server.js",
"scripts": {
"start": "node server.js"

},
"dependencies": {
"express": "^4.18.2"

}
}

The second file is our sample app, a simple “hello world” server. Still inside src/, add the following contents to
server.js:

Listing 2: server.js

'use strict';

const express = require('express')
const app = express()
const port = 8080
const host = '0.0.0.0'

app.get('/', (req, res) => {
res.send('Hello World from inside the rock!');

});

(continues on next page)

1.4. Bundle a Node.js app within a rock 9

https://snapcraft.io/docs/installing-snapd
https://documentation.ubuntu.com/lxd/en/latest/installing/
https://snapcraft.io/docker

Rockcraft, Release 1.3.1

(continued from previous page)

app.listen(port, host, () => {
console.log(`Running on http://${host}:${port}`);

});

Next, we’ll setup the Rockcraft project. In the original empty folder, create an empty file called rockcraft.yaml.
Then add the following snippets, one after the other:

Add the metadata that describes your rock, such as its name and licence:

Listing 3: rockcraft.yaml

name: my-node-app
base: ubuntu@22.04
version: '1.0'
summary: A rock that bundles a simple nodejs app
description: |

This rock bundles a recent node runtime to serve a simple "hello-world" app.
license: GPL-3.0
platforms:
amd64:

Add the container entrypoint, as a Pebble service:

Listing 4: rockcraft.yaml

services:
app:

override: replace
command: node server.js
startup: enabled
on-success: shutdown
on-failure: shutdown
working-dir: /lib/node_modules/node_web_app

Finally, add a part that describes how to build the app created in the src/ directory using the npm plugin:

Listing 5: rockcraft.yaml

parts:
app:

plugin: npm
npm-include-node: True
npm-node-version: "21.1.0"
source: src/

The whole file then looks like this:

Listing 6: rockcraft.yaml

name: my-node-app
base: ubuntu@22.04
version: '1.0'
summary: A rock that bundles a simple nodejs app
description: |

(continues on next page)

10 Chapter 1. Tutorials

https://github.com/canonical/pebble

Rockcraft, Release 1.3.1

(continued from previous page)

This rock bundles a recent node runtime to serve a simple "hello-world" app.
license: GPL-3.0
platforms:
amd64:

services:
app:

override: replace
command: node server.js
startup: enabled
on-success: shutdown
on-failure: shutdown
working-dir: /lib/node_modules/node_web_app

parts:
app:

plugin: npm
npm-include-node: True
npm-node-version: "21.1.0"
source: src/

1.4.4 Pack the rock with Rockcraft

To build the rock, run:

rockcraft pack

At the end of the process, a new rock file should be present in the current directory:

ls my-node-app_1.0_amd64.rock

1.4.5 Run the rock in Docker

First, import the recently created rock into Docker:

sudo /snap/rockcraft/current/bin/skopeo --insecure-policy copy oci-archive:my-node-app_1.
→˓0_amd64.rock docker-daemon:my-node-app:1.0

Since the rock bundles a web-app, we’ll first start serving that app on local port 8000:

docker run --name my-node-app -p 8000:8080 my-node-app:1.0

The output will look similar to this, indicating that Pebble started the app service:

2023-10-30T12:37:33.654Z [pebble] Started daemon.
2023-10-30T12:37:33.659Z [pebble] POST /v1/services 3.878846ms 202
2023-10-30T12:37:33.659Z [pebble] Started default services with change 1.
2023-10-30T12:37:33.663Z [pebble] Service "app" starting: node server.js
2023-10-30T12:37:33.864Z [app] Running on http://0.0.0.0:8080

1.4. Bundle a Node.js app within a rock 11

Rockcraft, Release 1.3.1

Next, open your web browser and navigate to http://localhost:8000. You should see a blank page with a “Hello
World from inside the rock!” message. Success!

You can now stop the running container by either interrupting it with CTRL+C or by running the following in another
terminal:

docker stop my-node-app

1.4.6 References

The sample app code comes from the “Hello world example” Express tutorial, available at https://expressjs.com/en/
starter/hello-world.html.

12 Chapter 1. Tutorials

https://expressjs.com/en/starter/hello-world.html
https://expressjs.com/en/starter/hello-world.html

CHAPTER

TWO

HOW-TO GUIDES

If you have a specific goal but are already familiar with Rockcraft, our How-to guides have more in-depth detail than
our tutorials and can be applied to a broader set of applications.

They’ll help you achieve an end result but may require you to understand and adapt the steps to fit your specific require-
ments.

2.1 How to get started - quick guide

See the Tutorials for a full getting started guide.

2.1.1 Getting started

Rockcraft is the tool for building Ubuntu-based and production-grade OCI images, aka rocks!

Rockcraft is distributed as a snap. For packing new rocks, it makes use of “providers” to execute all the steps involved
in the rock’s build process. At the moment, the supported providers are LXD and Multipass.

Requirements

Before installing the Rockcraft snap, make sure you have the necessary tools and environment to install and run Rock-
craft.

First things first, if you are running Ubuntu, Snap is already installed and ready to go:

snap --version

You’ll get something like:

snap 2.57.1
snapd 2.57.1
series 16
ubuntu 22.04
kernel 5.17.0-1016-oem

If this is not the case, then please check https://snapcraft.io/docs/installing-snap-on-ubuntu.

For what concerns providers, LXD is the default one for Rockcraft, so start by checking if it is available:

lxd --version

13

https://snapcraft.io/docs/installing-snap-on-ubuntu

Rockcraft, Release 1.3.1

The output will be something like:

5.5

And that it is enabled:

systemctl status snap.lxd.daemon.service

The output should look like:

snap.lxd.daemon.service - Service for snap application lxd.daemon
Loaded: loaded (/etc/systemd/system/snap.lxd.daemon.service; static)
Active: active (running) since Wed 2022-09-07 16:02:29 CEST; 6 days ago
...

If LXD is not installed, then run:

snap install lxd

And if LXD is not running, try starting it via:

lxd init --minimal # drop the --minimal for an interactive configuration

May you find any problems with LXD, please check https://ubuntu.com/lxd.

Choose a Rockcraft release

Pick a Rockcraft release, either from the snap store or via snap search rockcraft.

Keep in mind the chosen channel, as riskier releases are more prone to breaking changes.

Also, note that the Rockcraft’s snap confinement is set to “classic” (this is important for the installation step).

Installation steps

Having chosen a Rockcraft release, you must now install it via the snap CLI (or directly via the Ubuntu Desktop store):

sudo snap install rockcraft --channel=<chosen channel> --classic

For example:

sudo snap install rockcraft --classic

Testing Rockcraft

Once installed, you can make sure that Rockcraft is actually present in the system and ready to be used:

rockcraft --version

The output will be similar to:

rockcraft 0.0.1.dev1

14 Chapter 2. How-to guides

https://ubuntu.com/lxd
https://snapcraft.io/rockcraft

Rockcraft, Release 1.3.1

2.2 Chisel

Upgrade your Chisel slicing skills by learning how to cut, install and publish slices.

2.2.1 Cut existing slices with Chisel

Chisel has been integrated with Rockcraft in a way that it becomes seamless to users. Packages and slices can be both
installed via the stage-packages field without any ambiguities because slices follow an underscore-driven naming
convention. For instance, openssl means the whole OpenSSL package, while openssl_bins means just the binaries
slice of the OpenSSL package. Rockcraft will take care of the installation and priming of your content into the rock.
There’s an example here.

Chisel isn’t, however, specific to Rockcraft. It can be used on its own! It relies on a database of slices that are indexed
per Ubuntu release. So for example, the following command:

chisel cut --release ubuntu-22.04 --root myrootfs libgcc-s1_libs libssl3_libs

would look into the Ubuntu Jammy archives, fetch the provided packages and install only the desired slices into the
myrootfs folder.

To learn more about Chisel and how it works, have a look at the source code.

Do you need a package slice that doesn’t exist yet? Please feel free to propose your slice definition for inclusion in
Chisel releases.

2.2.2 How to create a package slice for Chisel

If your package doesn’t yet have the slice definitions you actually need to create your own slice definition (which you
can, later on, propose to be merged upstream for everyone else to use How to publish a slice definition).

Let’s assume you are trying to create a slice definition for installing the OpenSSL binary into your rock!

Make sure the slice definition doesn’t exist yet

To avoid re-creating a slice, check the following to see if something that fits your needs already exists:

1. Look into the upstream chisel-releases repository

2. Switch to the branch corresponding to the desired Ubuntu release for your rock

3. Search your package name within the list of slice definitions files

• if you find it, open it and try to find a slice name containing the bits and pieces you need from that package

Structure of a slice definitions file

There can be only one slice definitions file for each Ubuntu package. All of the slice definitions files follow the same
structure:

(req) Name of the package.
The slice definition file should be named accordingly (eg. "openssl.yaml")

package: <package-name>

(continues on next page)

2.2. Chisel 15

https://github.com/canonical/chisel-releases
https://github.com/canonical/chisel
https://github.com/canonical/chisel-releases
https://github.com/canonical/chisel-releases/tree/ubuntu-22.04/slices

Rockcraft, Release 1.3.1

(continued from previous page)

(req) List of slices
slices:

(req) Name of the slice
<slice-name>:

(opt) Optional list of slices that this slice depends on
essential:
- <pkgA_slice-name>
- ...

(req) The list of files, from the package, that this slice will install
contents:

</path/to/content>:
</path/to/another/multiple*/content/**>:
</path/to/moved/content>: {copy: /bin/original}
</path/to/link>: {symlink: /bin/mybin}
</path/to/new/dir>: {make: true}
</path/to/file/with/text>: {text: "Some text"}
</path/to/mutable/file/with/default/text>: {text: FIXME, mutable: true}
</path/to/temporary/content>: {until: mutate}

(opt) Mutation scripts, to allow for the reproduction of maintainer scripts,
based on Starlark (https://github.com/canonical/starlark)
mutate: |

...

Find the dependencies of your package

Find the dependencies of the package for which you want to create a new slice definition (openssl in this guide) with
this command:

apt show openssl

The output will be similar to:

package: openssl
Version: 3.0.2-0ubuntu1.7
Origin: Ubuntu
Maintainer: Ubuntu Developers <ubuntu-devel-discuss@lists.ubuntu.com>
Original-Maintainer: Debian OpenSSL Team <pkg-openssl-devel@alioth-lists.debian.net>
Bugs: https://bugs.launchpad.net/ubuntu/+filebug
Depends: libc6 (>= 2.34), libssl3 (>= 3.0.2-0ubuntu1.2)

From the above output, you can confirm that openssl depends on libc6 and libssl3. So when creating your slice
definitions file for OpenSSL, you will need to remember to include those packages’ slices as a dependency as well,
whenever needed. Let’s do that in the following section.

16 Chapter 2. How-to guides

Rockcraft, Release 1.3.1

Create your slice definition

You now have everything needed to actually define the OpenSSL slice that will install the content you are looking to
have in the final rock. Since you are looking to install just the OpenSSL binaries from the openssl package, what
about naming this new slice bins? Let’s go for it:

1. What is the name of your slice definitions file? It is a YAML file called openssl.yaml

2. What package name should be defined inside this file? The package name is openssl

3. What is your slice name? It should be called bins

4. What contents do you need from the OpenSSL package? Just the binaries - /usr/bin/c_rehash and /usr/
bin/openssl

5. Does your slice depend on any other package slice? Yes, OpenSSL depends on libc6 and libssl3

• Do these two packages have slice definitions files upstream? Yes, there is already a slice definitions file
for libc6 and another one for libssl3. If these dependencies were not present in the upstream Chisel release,
you would also need to create their corresponding slice definitions

• Which slices do you depend on then? Since you only want the OpenSSL binaries, you might only need the
libraries from libc6 and libssl3, as well as the configuration files from libc6 and openssl themselves.

Create a new YAML file named openssl.yaml, with the following content:

package: openssl
slices:

bins:
essential:
- libc6_libs
- libc6_config
- libssl3_libs
- openssl_config

contents:
/usr/bin/c_rehash:
/usr/bin/openssl:

config:
contents:

/etc/ssl/private/:
/etc/ssl/openssl.cnf:
/usr/lib/ssl/certs:
/usr/lib/ssl/openssl.cnf:
/usr/lib/ssl/private:

Notice the unforeseen new slice config. Because your OpenSSL binaries depend on the OpenSSL configuration files,
and those were not yet present anywhere in the Chisel releases upstream, you also need to create that slice! You may
also ask “why not put those configuration files inside the “bins” slice”? You could! But we recommend, as a best
practice, to separate and group contents according to their nature, as you may tomorrow need to create a new slice
definition that only needs the OpenSSL configurations and not the binaries.

And that’s it. This is your brand new slice definitions file, which will allow Chisel to install just the OpenSSL binaries
(and their dependencies) into your rock! To learn about how to actually use this new slice definition file and publish it
upstream for others to use, please check the following guides.

2.2. Chisel 17

https://github.com/canonical/chisel-releases/blob/ubuntu-22.04/slices/libc6.yaml
https://github.com/canonical/chisel-releases/blob/ubuntu-22.04/slices/libssl3.yaml

Rockcraft, Release 1.3.1

2.2.3 How to install a custom package slice

When a specific package slice is not available on the upstream Chisel releases, you will more likely end up creating
your own slice definition.

Once you have it though, the most obvious question is: how can I install this custom slice with Chisel?

Let’s assume you want to install the OpenSSL binaries slice created in this guide.

First, clone the Chisel releases repository:

Let's assume we are working with Ubuntu 22.04
git clone -b ubuntu-22.04 https://github.com/canonical/chisel-releases/

This repository acts as the database of slice definitions files for each Chisel release (Chisel releases are named analo-
gously to Ubuntu releases, and mapped into Git branches within the repository).

Chisel will only recognise slices belonging to a Chisel release, so you need to copy your slice definitions file - openssl.
yaml in this example - into the chisel-releases/slices folder. Note that if a slice definitions file with the same
name already exists, it most likely means that the package you’re slicing has already been sliced before, and in this
case, you only need to merge your changes into that existing file.

At this point, you should be able to find your custom OpenSSL slice bins in the local Chisel release:

grep -q "bins" chisel-releases/slices/openssl.yaml && echo "My slice exists"

If you wanted to test it with Chisel alone, you could now simply run

Testing with Chisel directly:
mkdir -p my-custom-openssl-fs
chisel cut --release ./chisel-releases --root my-custom-openssl-fs openssl_bins

You should end up with a folder named “my-custom-openssl-fs” containing a few folders, amongst which there would
be ./usr/bin/openssl.

To install the custom package slice into a rock though, you need to use Rockcraft!

Start by initialising a new Rockcraft project:

rockcraft init

After this command, you should find a new rockcraft.yaml file in your current path.

Adjust the rockcraft.yaml file according to the following content (feel free to adjust the metadata, but pay special
attention to the parts section):

name: custom-openssl-rock
base: bare
build_base: "ubuntu@22.04"
version: '0.0.1'
summary: A chiselled rock with a custom OpenSSL slice
description: |

A rock containing only the binaries (and corresponding dependencies) from the␣
→˓OpenSSL package.

Built from a custom Chisel release.
license: GPL-3.0
platforms:

amd64:
(continues on next page)

18 Chapter 2. How-to guides

https://github.com/canonical/chisel-releases

Rockcraft, Release 1.3.1

(continued from previous page)

parts:
build-context:

plugin: nil
source: chisel-releases/
source-type: local
override-build:

chisel cut --release ./ --root ${CRAFT_PART_INSTALL} openssl_bins

The “build-context” part allows you to send the local chisel-releases folder into the builder. The “override-build”
enables you to install your custom slice. Please not that this level of customisation is only needed when you want to
install from a custom Chisel release. If the desired slice definitions are already upstream, then you can simply use
stage-packages, as demonstrated in here.

Build your rock with:

rockcraft pack

The output will be:

Launching instance...
Retrieved base bare for amd64
Extracted bare:latest
Executed: pull build-context
Executed: pull pebble
Executed: overlay build-context
Executed: overlay pebble
Executed: build build-context
Executed: build pebble
Executed: stage build-context
Executed: stage pebble
Executed: prime build-context
Executed: prime pebble
Executed parts lifecycle
Exported to OCI archive 'custom-openssl-rock_0.0.1_amd64.rock'

Test that the OpenSSL binaries have been correctly installed with the following:

sudo /snap/rockcraft/current/bin/skopeo --insecure-policy copy oci-archive:custom-
→˓openssl-rock_0.0.1_amd64.rock docker-daemon:chisel-openssl:latest

The output will be:

Getting image source signatures
Copying blob 253d707d7e97 done
Copying blob 7044a53e1935 done
Copying config c114b59704 done
Writing manifest to image destination
Storing signatures

And after:

docker run --rm chisel-openssl exec openssl

The output of the Docker command will be OpenSSL’s default help message:

2.2. Chisel 19

Rockcraft, Release 1.3.1

help:

Standard commands
asn1parse ca ciphers cmp
cms crl crl2pkcs7 dgst
dhparam dsa dsaparam ec
ecparam enc engine errstr
fipsinstall gendsa genpkey genrsa
help info kdf list
mac nseq ocsp passwd
pkcs12 pkcs7 pkcs8 pkey
pkeyparam pkeyutl prime rand
rehash req rsa rsautl
s_client s_server s_time sess_id
<... many more lines of output>

And that’s it! You’ve now built your own rock from a custom Chisel release. Next step: share your slice definitions file
with others!

2.2.4 How to publish a slice definition

At this stage, you have created some package slice definitions and you have a custom Chisel release in your local
development environment. You have also tested this custom Chisel release, and it works! You believe there are others
who could really use it as well, so how can you make it accessible to everyone?

It is as simple as proposing your changes into the upstream Chisel releases repository:

1. Fork this repository https://github.com/canonical/chisel-releases and clone your fork:

Let's assume we are working with Ubuntu 22.04
git clone -b ubuntu-22.04 https://github.com/<your_github_username>/chisel-releases.git

2. Create a branch:

cd chisel-releases
git checkout -b create-openssl-bins-slice

3. Add and commit your modifications:

cp <path/to/your/slice/definitions/file> slices
git add slices/
git commit -m "feat: add new slice definitions for 'name_of_the_package'"
git push origin create-openssl-bins-slice

Create a pull request and wait for it to be merged.

And that’s it! Your custom Chisel release and new slice definitions are now available in Chisel, and anyone can use
them. Congrats! And thank you for your contribution.

20 Chapter 2. How-to guides

https://github.com/canonical/chisel-releases
https://github.com/canonical/chisel-releases

Rockcraft, Release 1.3.1

2.3 Documentation

If you have found something missing in this documentation, or have useful information to add whether it is a tutorial,
a guide or something else, we compiled a couple of guides for you to facilitate your contribution.

2.3.1 How to contribute to Rockcraft documentation

Tools and markup

Rockcraft’s documentation is generated with Sphinx, using reStructuredText as the markup language for the source
files.

Documentation structure

The Rockcraft documentation is organised according to the Diátaxis framework. Additionally, some rules are used to
ensure that code referred to by the documentation is kept up-to-date and tested thoroughly.

Including code and commands

All code-like content going into the documentation must be tested, especially if it is supposed to be reproducible. Pages
that include code snippets or terminal commands need to provide this information in separate files that can be included
in the project’s test infrastructure.

Categories of the documentation that use code snippets will each have their own directory with a code folder within.
For example, tutorials/code will hold code for the tutorials.

Each page that provides technical information to the reader in the form of code snippets or commands, such as a
tutorial or how-to guide, should have its own folder within the code directory and contain a task.yaml file for spread
tests. For example, the tutorials/hello-world.rst tutorial refers to code supplied in the tutorials/code/
hello-world/task.yaml file. Additional YAML files can also be included when needed, as shown here:

tutorials
hello-world.rst
code

hello-world
task.yaml
rockcraft.yaml

These YAML files can also include more than just the snippets that appear in a page. For example, they can include
additional commands to set up a test environment or clean up after the test has been run. Each snippet should be
delimited with comments that enable them to be conveniently extracted, as in this example:

[docs:snap-version]
snap --version
[docs:snap-version-end]

When including code snippets in a page, use the reStructuredText literalinclude directive with the start-after and
end-before options to extract the relevant lines of text. If the indentation of the quoted code is excessive, use the
dedent option to reduce it to an acceptable level, as in this example:

2.3. Documentation 21

https://www.sphinx-doc.org
https://www.sphinx-doc.org/en/master/usage/restructuredtext/index.html
https://diataxis.fr
https://yaml.org/
https://www.sphinx-doc.org/en/master/usage/restructuredtext/directives.html#directive-literalinclude

Rockcraft, Release 1.3.1

.. literalinclude:: code/get-started/task.yaml
:language: bash
:start-after: [docs:snap-version]
:end-before: [docs:snap-version-end]
:dedent: 2

Handling code snippets in this systematic way encourages reuse of existing code snippets and helps to ensure that the
documentation stays up-to-date.

Build the documentation

The How to build the documentation guide contains step-by-step instructions for setting up a virtual environment and
building the documentation.

Making a contribution

Report issues

If you have a request or found a problem with the documentation, then please submit an issue. These issues are
supervised and regularly triaged by the repository owners. If you don’t receive an answer within 2 weeks, please reply
to your own issue asking for an update.

Propose changes

Community contributions are more than welcome. To become an external contributor you should:

1. create a fork of the Rockcraft repository,

2. commit the changes to your fork (ideally to a new branch),

1. make sure to follow the project’s CONTRIBUTING guidelines,

3. create a Pull Request against the main branch.

Similarly to new issues, new Pull Requests (PR) are also supervised and regularly triaged by the repository owners. If
the tests are passing and you don’t receive an answer within 2 weeks, please add a comment to your own PR asking for
an update.

2.3.2 How to build the documentation

Use the provided Makefile to install the documentation requirements:

make installdocs

Once the requirements are installed, you can use the provided Makefile to build the documentation:

make docs # the home page can be found at docs/_build/html/index.html

Even better, serve it locally on port 8080. The documentation will be rebuilt on each file change, and will reload the
browser view.

make rundocs

22 Chapter 2. How-to guides

https://github.com/canonical/rockcraft/issues/new/choose
https://github.com/canonical/rockcraft/fork
https://github.com/canonical/rockcraft/blob/main/CONTRIBUTING.rst

Rockcraft, Release 1.3.1

Note that make rundocs automatically activates the virtual environment, as long as it already exists.

2.4 Rocks

Learn about how to pack a rock, how to migrate a Dockerfile to a rock, or how to use services in your rockcraft.yaml.
Those guides will help you explore all those aspects in Rockcraft and more.

2.4.1 How to use Rockcraft’s GitHub Action

Within your GitHub repository, make sure you have GitHub Actions enabled.

Navigate to .github/workflows, open the YAML file where you want the rock build to take place, and add the
following steps:

steps:
- uses: actions/checkout@v3
- uses: canonical/craft-actions/rockcraft-pack@main

Commit and push the changes. This will trigger a new workflow run using Rockcraft to pack your rock based on the
rockcraft.yaml file at your project’s root.

To learn how to publish this rock outside the GitHub build environment and how to pass additional input parameters to
this action, please refer to the action’s documentation.

2.4.2 How to convert an entrypoint to a Pebble layer

This guide will show you how to take an existing Docker image entrypoint and convert it into a Pebble layer, aka the
list of one or more services which is defined in rockcraft.yaml and then taken by the rock’s Pebble entrypoint.

Reference entrypoint

For this guide, the reference Docker image entrypoint will be NGINX. The official Debian-based NGINX image’s
Dockerfile can be found here.

In summary, this Dockerfile is basically installing NGINX into the image and then defining the OCI entrypoint to be a
custom shell script which parses the first argument given to it at container deployment time, and then configures and
launches NGINX accordingly.

Design the Pebble services

A Pebble layer is composed of metadata, checks and services. The latter is present in rockcraft.yaml as a top-level
field and it represents the services which are loaded by the Pebble entrypoint when deploying a rock.

Given the reference entrypoint, this guide’s goal is to create two services: one for nginx and another for nginx-debug.
The following services snippet does just that:

services:
nginx:
override: replace
startup: disabled
command: nginx [-h]

(continues on next page)

2.4. Rocks 23

https://docs.github.com/en/actions/quickstart
https://github.com/canonical/craft-actions#rockcraft-pack
https://github.com/nginxinc/docker-nginx/blob/73a5acae6945b75b433cafd0c9318e4378e72cbb/mainline/debian/Dockerfile
https://github.com/nginxinc/docker-nginx/blob/73a5acae6945b75b433cafd0c9318e4378e72cbb/mainline/debian/docker-entrypoint.sh
https://github.com/canonical/pebble#layer-specification
https://canonical-rockcraft.readthedocs-hosted.com/en/latest/reference/rockcraft.yaml/#format-specification
https://canonical-rockcraft.readthedocs-hosted.com/en/latest/reference/rockcraft.yaml/#format-specification

Rockcraft, Release 1.3.1

(continued from previous page)

environment:
TZ: UTC

on-failure: shutdown
nginx-debug:
override: replace
startup: disabled
command: nginx-debug [-h]
environment:
TZ: UTC

on-failure: shutdown

This is defining two separate Pebble services which are disabled by default at startup, have the same environment
variable, but are executed with different commands (nginx and nginx-debug).

Build the rock

Copy the above snippet and incorporate it into the rockcraft.yaml file which will be used to build your rock, as
shown below:

name: custom-nginx-rock
base: "ubuntu@22.04"
version: latest
summary: An NGINX rock
description: |

A rock equivalent of the official NGINX Docker image from Docker Hub.
license: Apache-2.0
platforms:

amd64:

package-repositories:
- type: apt
url: https://nginx.org/packages/mainline/ubuntu
key-id: 573BFD6B3D8FBC641079A6ABABF5BD827BD9BF62
suites:
- jammy

components:
- nginx

priority: always

parts:
nginx-user:
plugin: nil
overlay-script: |
set -x
useradd -R $CRAFT_OVERLAY -M -U -r nginx

nginx:
plugin: nil
after:
- nginx-user

(continues on next page)

24 Chapter 2. How-to guides

Rockcraft, Release 1.3.1

(continued from previous page)

stage-packages:
- nginx
- tzdata

Services to be loaded by the Pebble entrypoint
services:
nginx:
override: replace
startup: disabled
command: nginx [-h]
environment:
TZ: UTC

on-failure: shutdown
nginx-debug:
override: replace
startup: disabled
command: nginx-debug [-h]
environment:
TZ: UTC

on-failure: shutdown

This Rockcraft recipe is fully declarative, with the creation of the “nginx” user being the only scripted step.

To reproduce what the reference NGINX Dockerfile is doing, notice the use of package-repositories in this
rockcraft.yaml file, allowing you to also make use of NGINX’s 3rd party package repository (even using the same
GPG key ID as the one used in the Dockerfile).

NOTE: to add custom configuration files, you can use the dump plugin.

Now, build the final custom NGINX rock with:

rockcraft pack

You should see something like this:

Launching instance...
Retrieved base ubuntu@22.04 for amd64
Extracted ubuntu@22.04
Refreshing repositories | (4.6s)
Package repositories installed
Executed: pull nginx-user
Executed: pull nginx
Executed: pull pebble
Executed: overlay nginx-user
Executed: overlay nginx
Executed: overlay pebble
Executed: build nginx-user
Executed: skip pull nginx-user (already ran)
Executed: skip overlay nginx-user (already ran)
Executed: skip build nginx-user (already ran)
Executed: stage nginx-user (required to build 'nginx')
Executed: build nginx
Executed: build pebble

(continues on next page)

2.4. Rocks 25

https://github.com/nginxinc/docker-nginx/blob/73a5acae6945b75b433cafd0c9318e4378e72cbb/mainline/debian/Dockerfile

Rockcraft, Release 1.3.1

(continued from previous page)

Executed: skip stage nginx-user (already ran)
Executed: stage nginx
Executed: stage pebble
Executed: prime nginx-user
Executed: prime nginx
Executed: prime pebble
Executed parts lifecycle
Exported to OCI archive 'custom-nginx-rock_latest_amd64.rock'

Then copy the resulting rock (from the OCI archive format) to the Docker daemon via:

sudo /snap/rockcraft/current/bin/skopeo --insecure-policy copy oci-archive:custom-nginx-
→˓rock_latest_amd64.rock docker-daemon:custom-nginx-rock:latest

And finally, run the container:

docker run -d --name nginx-pebble-service -p 8080:80 custom-nginx-rock:latest --args␣
→˓nginx -g 'daemon off;' \; start nginx

Notice the given command start nginx, as this is Pebble’s client syntax to let the Pebble daemon know that the
nginx service defined in rockcraft.yaml (which is disabled by default) should be enabled at startup. Otherwise,
the Pebble daemon would start without any NGINX service, although you could still later on ask for that service to be
started (via something like docker exec <container-name> start nginx).

At this point, your container should be deployed and running the nginx service, and you should be able to see the
NGINX landing page by accessing port 8080 on you localhost:

curl localhost:8080

For which you should see the following output:

<!DOCTYPE html>
<html>
<head>
<title>Welcome to nginx!</title>
<style>
html { color-scheme: light dark; }
body { width: 35em; margin: 0 auto;
font-family: Tahoma, Verdana, Arial, sans-serif; }
</style>
</head>
<body>
<h1>Welcome to nginx!</h1>
<p>If you see this page, the nginx web server is successfully installed and
working. Further configuration is required.</p>

<p>For online documentation and support please refer to
nginx.org.

Commercial support is available at
nginx.com.</p>

<p>Thank you for using nginx.</p>
</body>
</html>

26 Chapter 2. How-to guides

Rockcraft, Release 1.3.1

2.4.3 Publish a rock to a registry

Prerequisites

• skopeo installed (https://github.com/containers/skopeo)

• Docker installed (https://docs.docker.com/get-docker/)

Push a rock to Docker Hub

The output of rockcraft pack is a rock in its oci-archive archive format.

skopeo --insecure-policy copy oci-archive:<your_rock_file.rock> docker://<container_
→˓registry>/<repo>:<tag>

Output:

Getting image source signatures
Copying blob e65b2e587073 skipped: already exists
Copying blob 01f981dde5a5 skipped: already exists
Copying config 5da22a9016 done
Writing manifest to image destination
Storing signatures

2.4.4 Migrate a popular Docker image to a chiselled rock

Prerequisites

• snap enabled system (https://snapcraft.io)

• LXD installed (https://linuxcontainers.org/lxd/getting-started-cli/)

• skopeo installed (https://github.com/containers/skopeo). Skopeo will also be automatically installed as a Rock-
craft dependency

• Docker installed (https://snapcraft.io/docker)

• a text editor

Install Rockcraft

Install Rockcraft on your host:

sudo snap install rockcraft --classic

2.4. Rocks 27

https://github.com/containers/skopeo
https://docs.docker.com/get-docker/
https://snapcraft.io
https://linuxcontainers.org/lxd/getting-started-cli/
https://github.com/containers/skopeo
https://snapcraft.io/docker

Rockcraft, Release 1.3.1

Project Setup

For this tutorial, the reference Docker image will be Microsoft’s .NET Runtime 6.0. The target base Ubuntu release
will be Jammy, and the target architecture will be amd64.

Create a new directory, write the reference Dockerfile (pasted below) into a text editor and save it as Dockerfile:

ARG REPO=mcr.microsoft.com/dotnet/runtime-deps

Installer image
FROM amd64/buildpack-deps:jammy-curl AS installer

Retrieve .NET Runtime
RUN dotnet_version=6.0.16 \

&& curl -fSL --output dotnet.tar.gz https://dotnetcli.azureedge.net/dotnet/Runtime/
→˓$dotnet_version/dotnet-runtime-$dotnet_version-linux-x64.tar.gz \

&& dotnet_sha512=
→˓'c8891b791a51e7d2c3164470dfd2af2ce59af3c26404e84075277e307df7dcd1e3ccf1a1a3c2655fe2eea8a30f8349b7adbbe5de4cedfee52da06729a505d8f5
→˓' \

&& echo "$dotnet_sha512 dotnet.tar.gz" | sha512sum -c - \
&& mkdir -p /dotnet \
&& tar -oxzf dotnet.tar.gz -C /dotnet \
&& rm dotnet.tar.gz

.NET runtime image
FROM $REPO:6.0.24-jammy-amd64

.NET Runtime version
ENV DOTNET_VERSION=6.0.16

COPY --from=installer ["/dotnet", "/usr/share/dotnet"]

RUN ln -s /usr/share/dotnet/dotnet /usr/bin/dotnet

For the sake of comparison, start by building this Docker image by running:

docker build -t dotnet-runtime:reference .

The output should look as follows:

[+] Building 0.6s (10/10) FINISHED
=> [internal] load .dockerignore0.0s
=> => transferring context: 2B0.0s
=> [internal] load build definition from Dockerfile 0.0s
=> => transferring dockerfile: 881B 0.0s
=> [internal] load metadata for mcr.microsoft.com/dotnet/runtime-deps:6.0.16-jammy-amd64␣
→˓ 0.1s
=> [internal] load metadata for docker.io/amd64/buildpack-deps:jammy-curl 0.6s
=> [stage-1 1/3] FROM mcr.microsoft.com/dotnet/runtime-deps:6.0.16-jammy-
→˓amd64@sha256:e764c6f0cc866a1f2932 0.0s
=> [installer 1/2] FROM docker.io/amd64/buildpack-deps:jammy-
→˓curl@sha256:e1f00c6daf4cd328bbef9c52e6c60f18a 0.0s
=> CACHED [installer 2/2] RUN dotnet_version=6.0.16&& curl -fSL --output dotnet.tar.gz␣
→˓https://dotnet 0.0s

(continues on next page)

28 Chapter 2. How-to guides

https://github.com/dotnet/dotnet-docker/tree/main/src/runtime/6.0/jammy

Rockcraft, Release 1.3.1

(continued from previous page)

=> CACHED [stage-1 2/3] COPY --from=installer [/dotnet, /usr/share/dotnet] 0.0s
=> CACHED [stage-1 3/3] RUN ln -s /usr/share/dotnet/dotnet /usr/bin/dotnet 0.0s
=> exporting to image 0.0s
=> => exporting layers 0.0s
=> => writing image␣
→˓sha256:a24cab51d4d02019dafcd22a2e2a3e1e6d033f9bbf1cb401d465cb2426bb2264 0.0s
=> => naming to docker.io/library/dotnet-runtime:reference 0.0s

Now, inspect this .NET reference image’s size:

docker images dotnet-runtime:reference

The output should look as follows:

REPOSITORY TAG IMAGE ID CREATED SIZE
dotnet-runtime reference a24cab51d4d0 4 minutes ago 187MB

And make sure it is functional:

docker run --rm dotnet-runtime:reference dotnet --info

The output should look as follows:

global.json file:
Not found

Host:
Version:6.0.16
Architecture: x64
Commit: 1e620a42e7

.NET SDKs installed:
No SDKs were found.

.NET runtimes installed:
Microsoft.NETCore.App 6.0.16 [/usr/share/dotnet/shared/Microsoft.NETCore.App]

Download .NET:
https://aka.ms/dotnet-download

Learn about .NET Runtimes and SDKs:
https://aka.ms/dotnet/runtimes-sdk-info

2.4. Rocks 29

Rockcraft, Release 1.3.1

Convert Dockerfile to rockcraft.yaml file

From a quick analysis of the reference Dockerfile above, the following requirements must be met:

• R1. The rock must be based on Ubuntu Jammy

• R2. There is no predefined Entrypoint or default command

• R3. The rock must have version 6.0 of the .NET Runtime installed

• R4. /usr/bin/dotnet must be a symbolic link to the .NET binary

With these requirements in mind, and in the same directory as the Dockerfile from above, write the following into a
text editor and save it as rockcraft.yaml:

name: dotnet-runtime
summary: .NET Runtime 6.0
description: A Chiselled rock for the .NET Runtime 6.0
version: chiselled

Use a "bare" base for an even smaller rock
base: bare

Meeting requirement R1 by making sure the rock builds on Jammy
build-base: ubuntu@22.04

license: Apache-2.0

Target architecture is amd64
platforms:
amd64: # Make sure this value matches your computer's architecture

For meeting requirement R2, simply don't specify any entrypoint (aka "services")

parts:
install-dotnet-runtime:
plugin: nil

Based on requirement R3, install version 6.0 of the .NET runtime "libs" slice
stage-packages:
- base-files_base
- dotnet-runtime-6.0_libs

Based on requirement R4, create the symbolic link
override-prime: |
craftctl default
ln -s /usr/lib/dotnet/dotnet usr/bin/

Note the subtle chiselling of the .NET Runtime package in the rockcraft.yaml file above. You are requesting Rock-
craft to install the libs slice of the dotnet-runtime deb, which is defined in the ubuntu-22.04 Chisel release.

30 Chapter 2. How-to guides

https://github.com/canonical/chisel-releases/blob/ubuntu-22.04/slices/

Rockcraft, Release 1.3.1

Pack the Chiselled Rock with Rockcraft

To build the rock, run:

rockcraft pack --verbosity debug

The output should be similar to:

2023-04-19 15:52:48.045 Starting Rockcraft 0.0.1.dev1
...
2023-04-19 15:52:48.214 Launching instance...
2023-04-19 15:52:48.214 Executing on host: lxc remote list --format=yaml
...
2023-04-19 15:58:25.138 :: 2023-04-19 13:56:57.784 Executing parts lifecycle: build␣
→˓install-dotnet-runtime
2023-04-19 15:58:25.138 :: 2023-04-19 13:56:57.784 Executing action
2023-04-19 15:58:25.138 :: 2023-04-19 13:56:57.784 execute action install-dotnet-
→˓runtime:Action(part_name='install-dotnet-runtime', step=Step.BUILD, action_
→˓type=ActionType.RUN, reason=None, project_vars=None,␣
→˓properties=ActionProperties(changed_files=None, changed_dirs=None))
2023-04-19 15:58:25.138 :: 2023-04-19 13:56:57.785 load state file: /root/parts/install-
→˓dotnet-runtime/state/pull
2023-04-19 15:58:25.138 :: 2023-04-19 13:56:58.081 :: 2023/04/19 13:56:58 Consulting␣
→˓release repository...
2023-04-19 15:58:25.138 :: 2023-04-19 13:56:58.349 :: 2023/04/19 13:56:58 Fetching␣
→˓current ubuntu-22.04 release...
2023-04-19 15:58:25.138 :: 2023-04-19 13:56:58.351 :: 2023/04/19 13:56:58 Processing␣
→˓ubuntu-22.04 release...
2023-04-19 15:58:25.138 :: 2023-04-19 13:56:58.369 :: 2023/04/19 13:56:58 Selecting␣
→˓slices...
2023-04-19 15:58:25.138 :: 2023-04-19 13:56:58.369 :: 2023/04/19 13:56:58 Fetching␣
→˓ubuntu 22.04 jammy suite details...
2023-04-19 15:58:25.138 :: 2023-04-19 13:57:04.548 :: 2023/04/19 13:57:04 Release date:␣
→˓Thu, 21 Apr 2022 17:16:08 UTC
2023-04-19 15:58:25.138 :: 2023-04-19 13:57:04.549 :: 2023/04/19 13:57:04 Fetching index␣
→˓for ubuntu 22.04 jammy main component...
2023-04-19 15:58:25.138 :: 2023-04-19 13:57:05.684 :: 2023/04/19 13:57:05 Fetching index␣
→˓for ubuntu 22.04 jammy universe component...
2023-04-19 15:58:25.138 :: 2023-04-19 13:57:25.215 :: 2023/04/19 13:57:25 Fetching␣
→˓ubuntu 22.04 jammy-security suite details...
2023-04-19 15:58:25.138 :: 2023-04-19 13:57:25.289 :: 2023/04/19 13:57:25 Release date:␣
→˓Wed, 19 Apr 2023 12:55:48 UTC
2023-04-19 15:58:25.139 :: 2023-04-19 13:57:25.289 :: 2023/04/19 13:57:25 Fetching index␣
→˓for ubuntu 22.04 jammy-security main component...
2023-04-19 15:58:25.139 :: 2023-04-19 13:57:30.489 :: 2023/04/19 13:57:30 Fetching index␣
→˓for ubuntu 22.04 jammy-security universe component...
2023-04-19 15:58:25.139 :: 2023-04-19 13:57:32.522 :: 2023/04/19 13:57:32 Fetching␣
→˓ubuntu 22.04 jammy-updates suite details...
2023-04-19 15:58:25.139 :: 2023-04-19 13:57:32.667 :: 2023/04/19 13:57:32 Release date:␣
→˓Wed, 19 Apr 2023 13:29:07 UTC
2023-04-19 15:58:25.139 :: 2023-04-19 13:57:32.668 :: 2023/04/19 13:57:32 Fetching index␣
→˓for ubuntu 22.04 jammy-updates main component...
2023-04-19 15:58:25.139 :: 2023-04-19 13:57:33.631 :: 2023/04/19 13:57:33 Fetching index␣
→˓for ubuntu 22.04 jammy-updates universe component...

(continues on next page)

2.4. Rocks 31

Rockcraft, Release 1.3.1

(continued from previous page)

2023-04-19 15:58:25.139 :: 2023-04-19 13:57:37.908 :: 2023/04/19 13:57:37 Fetching pool/
→˓main/b/base-files/base-files_12ubuntu4.3_amd64.deb...
2023-04-19 15:58:25.139 :: 2023-04-19 13:57:38.157 :: 2023/04/19 13:57:38 Fetching pool/
→˓main/g/glibc/libc6_2.35-0ubuntu3.1_amd64.deb...
2023-04-19 15:58:25.139 :: 2023-04-19 13:57:40.834 :: 2023/04/19 13:57:40 Fetching pool/
→˓main/g/gcc-12/libgcc-s1_12.1.0-2ubuntu1~22.04_amd64.deb...
2023-04-19 15:58:25.140 :: 2023-04-19 13:57:41.262 :: 2023/04/19 13:57:41 Fetching pool/
→˓main/g/gcc-12/libstdc++6_12.1.0-2ubuntu1~22.04_amd64.deb...
2023-04-19 15:58:25.140 :: 2023-04-19 13:57:42.001 :: 2023/04/19 13:57:42 Fetching pool/
→˓universe/d/dotnet6/dotnet-host_6.0.116-0ubuntu1~22.04.1_amd64.deb...
2023-04-19 15:58:25.140 :: 2023-04-19 13:57:42.119 :: 2023/04/19 13:57:42 Fetching pool/
→˓universe/d/dotnet6/dotnet-hostfxr-6.0_6.0.116-0ubuntu1~22.04.1_amd64.deb...
2023-04-19 15:58:25.140 :: 2023-04-19 13:57:42.237 :: 2023/04/19 13:57:42 Fetching pool/
→˓main/i/icu/libicu70_70.1-2_amd64.deb...
2023-04-19 15:58:25.140 :: 2023-04-19 13:57:44.046 :: 2023/04/19 13:57:44 Fetching pool/
→˓main/u/ust/liblttng-ust-common1_2.13.1-1ubuntu1_amd64.deb...
2023-04-19 15:58:25.140 :: 2023-04-19 13:57:44.146 :: 2023/04/19 13:57:44 Fetching pool/
→˓main/n/numactl/libnuma1_2.0.14-3ubuntu2_amd64.deb...
2023-04-19 15:58:25.141 :: 2023-04-19 13:57:44.247 :: 2023/04/19 13:57:44 Fetching pool/
→˓main/u/ust/liblttng-ust-ctl5_2.13.1-1ubuntu1_amd64.deb...
2023-04-19 15:58:25.141 :: 2023-04-19 13:57:44.355 :: 2023/04/19 13:57:44 Fetching pool/
→˓main/u/ust/liblttng-ust1_2.13.1-1ubuntu1_amd64.deb...
2023-04-19 15:58:25.141 :: 2023-04-19 13:57:44.571 :: 2023/04/19 13:57:44 Fetching pool/
→˓main/o/openssl/libssl3_3.0.2-0ubuntu1.8_amd64.deb...
2023-04-19 15:58:25.141 :: 2023-04-19 13:57:45.111 :: 2023/04/19 13:57:45 Fetching pool/
→˓main/l/llvm-toolchain-13/libunwind-13_13.0.1-2ubuntu2.1_amd64.deb...
2023-04-19 15:58:25.141 :: 2023-04-19 13:57:45.213 :: 2023/04/19 13:57:45 Fetching pool/
→˓main/x/xz-utils/liblzma5_5.2.5-2ubuntu1_amd64.deb...
2023-04-19 15:58:25.141 :: 2023-04-19 13:57:53.384 :: 2023/04/19 13:57:53 Fetching pool/
→˓main/libu/libunwind/libunwind8_1.3.2-2build2_amd64.deb...
2023-04-19 15:58:25.141 :: 2023-04-19 13:57:53.523 :: 2023/04/19 13:57:53 Fetching pool/
→˓main/z/zlib/zlib1g_1.2.11.dfsg-2ubuntu9.2_amd64.deb...
2023-04-19 15:58:25.141 :: 2023-04-19 13:57:53.982 :: 2023/04/19 13:57:53 Fetching pool/
→˓universe/d/dotnet6/dotnet-runtime-6.0_6.0.116-0ubuntu1~22.04.1_amd64.deb...
...
2023-04-19 15:56:00.566 :: 2023-04-19 13:55:59.756 Created new layer
2023-04-19 15:56:00.566 :: 2023-04-19 13:55:59.758 Adding Pebble entrypoint
2023-04-19 15:56:00.566 :: 2023-04-19 13:55:59.758 Configuring entrypoint...
2023-04-19 15:56:00.567 :: 2023-04-19 13:55:59.767 Entrypoint set to ['/bin/pebble',
→˓'enter']
2023-04-19 15:56:00.567 :: 2023-04-19 13:55:59.767 Adding metadata
2023-04-19 15:56:00.567 :: 2023-04-19 13:55:59.767 Configuring labels and annotations...
2023-04-19 15:56:00.567 :: 2023-04-19 13:55:59.785 Labels and annotations set to ['org.
→˓opencontainers.image.version=chiselled', 'org.opencontainers.image.title=dotnet-runtime
→˓', 'org.opencontainers.image.ref.name=dotnet-runtime', 'org.opencontainers.image.
→˓licenses=Apache-2.0', 'org.opencontainers.image.created=2023-04-19T13:55:59.
→˓767870+00:00', 'org.opencontainers.image.base.
→˓digest=13155b5ad26816d4107ee499de072069a701c9fe183f7e347e8d88fee16e69c2']
2023-04-19 15:56:00.567 :: 2023-04-19 13:55:59.792 Setting the ROCK's Control Data
2023-04-19 15:56:00.567 :: 2023-04-19 13:55:59.797 Adding to layer: /tmp/tmpdqjmducj/.
→˓rock as '.rock'
2023-04-19 15:56:00.567 :: 2023-04-19 13:55:59.797 Adding to layer: /tmp/tmpdqjmducj/.

(continues on next page)

32 Chapter 2. How-to guides

Rockcraft, Release 1.3.1

(continued from previous page)

→˓rock/metadata.yaml as '.rock/metadata.yaml'
2023-04-19 15:56:00.567 :: 2023-04-19 13:55:59.803 Control data written
2023-04-19 15:56:00.567 :: 2023-04-19 13:55:59.804 Metadata added
2023-04-19 15:56:00.567 :: 2023-04-19 13:55:59.804 Exporting to OCI archive
2023-04-19 15:56:00.567 :: 2023-04-19 13:56:00.148 Exported to OCI archive 'dotnet-
→˓runtime_chiselled_amd64.rock'

At the end of the process, a file named dotnet-runtime_chiselled_amd64.rock should be present in the current
directory. That’s your chiselled rock, as an OCI archive.

Test the rock

First, import the recently created rock into Docker:

sudo /snap/rockcraft/current/bin/skopeo --insecure-policy copy oci-archive:dotnet-
→˓runtime_chiselled_amd64.rock docker-daemon:dotnet-runtime:chiselled

Now inspect the chiselled .NET Runtime rock the same way as it was done for the reference Docker image:

docker images dotnet-runtime:chiselled

Which should print something like:

REPOSITORY TAG IMAGE ID CREATED SIZE
dotnet-runtime chiselled 4e0951d180e3 About a minute ago 124MB

And make sure this rock is as functional as the reference Docker image:

docker run --rm dotnet-runtime:chiselled exec dotnet --info

The output should be similar to:

global.json file:
Not found

Host:
Version:6.0.16
Architecture: x64
Commit: 1e620a42e7

.NET SDKs installed:
No SDKs were found.

.NET runtimes installed:
Microsoft.NETCore.App 6.0.16 [/usr/lib/dotnet/shared/Microsoft.NETCore.App]

Download .NET:
https://aka.ms/dotnet-download

Learn about .NET Runtimes and SDKs:
https://aka.ms/dotnet/runtimes-sdk-info

2.4. Rocks 33

Rockcraft, Release 1.3.1

Conclusion

In this tutorial, you have migrated from an imperative container build recipe (Dockerfile) to a declarative one
(rockcraft.yaml), without any overhead on the final recipe’s size or complexity.

The resulting rock ended up being 63MB smaller than the reference one, while offering the same .NET Runtime func-
tionality.

2.4.5 Use the flask-framework extension

Note: The Flask extension is compatible with the bare and ubuntu@22.04 bases.

To employ it, include extensions: [flask-framework] in your rockcraft.yaml file.

Example:

name: example-flask
summary: A Flask application
description: A rock packing a Flask application via the flask extension
version: "0.1"
base: bare
build-base: ubuntu@22.04
license: Apache-2.0

extensions:
- flask-framework

platforms:
amd64:

2.4.6 Managing project files with the flask extension

By default the flask extension only includes app.py, static/, app/, and templates/ in the flask project, but you
can overwrite this behaviour with a prime declaration in the specially-named flask-framework/install-app part
to instruct the flask extension on which files to include or exclude from the project directory in the rock image.

The extension places the files from the project folder in the /flask/app directory in the final image - therefore, all
inclusions and exclusions must be prefixed with flask/app.

For example, to include only select files:

parts:
flask-framework/install-app:
prime:
- flask/app/static
- flask/app/.env.production
- flask/app/app.py
- flask/app/templates

To exclude certain files from the project directory in the rock image, add the following part to rockcraft.yaml:

34 Chapter 2. How-to guides

Rockcraft, Release 1.3.1

parts:
flask-framework/install-app:
prime:
- -flask/app/.git
- -flask/app/.venv
- -flask/app/.yarn
- -flask/app/node_modules

2.4.7 Use the django-framework extension

Note: The Django extension is compatible with the bare and ubuntu@22.04 bases.

To use it, include extensions: [django-framework] in your rockcraft.yaml file.

Example:

name: example-django
summary: A Django application
description: A rock packing a Django application
version: "0.1"
base: ubuntu@22.04
license: Apache-2.0

extensions:
- django-framework

platforms:
amd64:
arm64:

2.4.8 Managing project files with the Django extension

The extension will search for a directory named after the rock within the Rockcraft project directory to transfer it into
the rock image. The Django project should have a directory named after the rock, and the wsgi.py file within this
directory must contain an object named application to serve as the WSGI entry point.

The following is a typical Rockcraft project that meets this requirement.

+-- example_django
| |-- example_django
| | |-- wsgi.py
| | +-- ...
| |-- manage.py
| |-- migrate.sh
| +-- some_app
| |-- views.py
| +-- ...
|-- requirements.txt
+-- rockcraft.yaml

2.4. Rocks 35

Rockcraft, Release 1.3.1

To override this behaviour and adopt a different project structure, add the django-framework/install-app part to
install the Django project in the /django/app directory within the rock image and update the command for the django
service to point to the WSGI path of your project.

parts:
django-framework/install-app:
plugin: dump
source: .
organize:
foobar: django/app/foobar
manage.py: django/app/manage.py

stage:
- django/app/foobar
- django/app/manage.py

prime:
- django/app/foobar
- django/app/manage.py

2.4.9 Including local files and remote resources

Craft-parts provides the built-in dump plugin for all kinds of projects that need to include local files and remote resources
as is. This plugin uses the source property in the part to download, unpack, and copy files and directories from the
given source to the build environment, then do some organizing if needed, and include them in the final payload.

If you don’t need to copy these files, consider using the nil plugin. If you need to download and build them from
source, consider using plugins for the corresponding languages, such as the python plugin and the rust plugin.

The typical use cases for the dump plugin:

• Include static files in the final payload, such as scripts, configurations, services, documentation, media files, or
other resources that are not generated by the build process.

• Include pre-built third-party packages, libraries, binaries, or other artifacts that are not available in the system’s
package manager or in the project’s source code.

For supported source types please refer to source-type.

Example: To include a local directory and move files to the correct locations

Given the following project structure:

.
misc

fonts
good.otf

services
README
hello.service

The following dump part can be used to include the hello.service and good.otf files from the misc directory,
then move them to the correct locations, keeping only /usr in the final payload:

parts:
my-part:

(continues on next page)

36 Chapter 2. How-to guides

Rockcraft, Release 1.3.1

(continued from previous page)

plugin: dump
source: ./misc
source-type: local
organize:
'services/*.service': usr/lib/systemd/system/
'fonts/*': usr/share/fonts/

stage:
- usr/

The resulting payload will look like this:

.
usr

lib
systemd

system
hello.service

share
fonts

good.otf

Example: To include a remote third-party deb package from a URL

The following dump part downloads a busybox-static deb package from a remote URL and includes it in the final
payload:

parts:
my-part:
plugin: dump
source: http://archive.ubuntu.com/ubuntu/pool/main/b/busybox/busybox-static_1.30.1-

→˓7ubuntu3_amd64.deb
source-type: deb

The resulting payload will look like this:

.
bin

busybox
static-sh -> busybox

usr
share

doc
busybox-static

...
man

...

2.4. Rocks 37

Rockcraft, Release 1.3.1

Example: To include a remote third-party pre-compiled archive from a URL

The following dump part downloads a pre-compiled git version of the ffmpeg tar archive (xz compressed) from a
remote URL and only includes the ffmpeg and ffprobe binaries in the /usr/bin.

parts:
my-part:
plugin: dump
source: https://johnvansickle.com/ffmpeg/builds/ffmpeg-git-amd64-static.tar.xz
source-type: tar
organize:
'ffprobe': usr/bin/
'ffmpeg': usr/bin/

stage:
- usr/

The resulting payload will look like this:

.
usr

bin
ffmpeg
ffprobe

Example: To include a remote git repository with a specific branch

The following dump part will clone a theme from a remote git repository and move the theme files to the correct
location.

parts:
my-part:
plugin: dump
source: https://github.com/snapcore/plymouth-theme-ubuntu-core.git
source-type: git
source-branch: main
source-depth: 1
organize:
ubuntu-core: usr/share/plymouth/themes/ubuntu-core

The resulting payload will look like this:

.
README.md
copyright
usr

share
plymouth

themes
ubuntu-core

throbber-1.png
...

38 Chapter 2. How-to guides

Rockcraft, Release 1.3.1

2.4.10 Overriding the default build

Craft-parts provides built-in plugins for a number of different programming languages, frameworks, and build tools.
Since it’s not possible to support every possible configuration and scenario for each of these technologies, each plugin
emits a series of build commands to reproduce what is most typically done for the given domain; for instance, the make
plugin generates code that calls make; make install at build-time.

For cases where a given project being built does not follow the typical path, craft-parts provides a way to declare the
build commands for a specific part via the override-build keyword.

Typical reasons for using override-build include:

• Having to run commands before or after the plugin’s default commands;

• Building a project that uses a technology (programming language, framework, or build tool) that is not supported
by craft-part’s default plugins;

• More generally, using the nil plugin (which has no default build commands).

Follow these steps to ensure a successful build, and see also a general description of the Build process.

Determine that you do need to use override-build

The default plugins strive to implement the most common build process for a given technology but they typically also
provide plugin-specific options that allow some degree of customization. As some examples:

• The make plugin exposes the make-parameters option to allow passing parameters that might be specific to
the project’s Makefile;

• The npm plugin exposes the npm_node_version option to select the specific version of npm that should be used
during the build;

• The python plugin exposes the python-packages and python-requirements options to declare specific
packages and requirements files that should be used when creating the build’s virtual environment.

See the documentation for the plugins that are relevant to your project to determine whether the default process is
suitable for you.

Ensure you place the built artefacts in the correct place

The purpose of the Build step in the lifecycle is to generate software artefacts to be included in the final payload. This
is achieved by populating a special “install” directory - the contents of this directory will then move forward to the
Stage and Prime lifecycle steps. A very common mistake when overriding a part’s Build is failing to place the created
artefacts in the correct directory.

The location of the “install” directory is stored in the ${CRAFT_PART_INSTALL} environment variable. This variable
is set by craft-parts’ tooling when calling the script contained in override-build. Therefore, in many cases the build
script can simply call the project’s build tool with ${CRAFT_PART_INSTALL} as the output directory. Some examples:

• Go projects can use either -o "${CRAFT_PART_INSTALL}" or set GOBIN to ${CRAFT_PART_INSTALL}/bin
when calling go build or go install. This is in part what the go plugin does;

• The dump plugin copies the entire source to the “install” dir. This is achieved by cp’ing the contents of the
source directory directly to ${CRAFT_PART_INSTALL};

• The npm plugin sets the --prefix option of npm install to ${CRAFT_PART_INSTALL};

• The make plugin sets the commonly-used DESTDIR variable to ${CRAFT_PART_INSTALL} to ensure that make
install places the built artefacts in the correct location.

2.4. Rocks 39

Rockcraft, Release 1.3.1

The last example merits extra clarification: while DESTDIR is a widely-used convention, it is by no means manda-
tory. Since Makefiles are fairly free-form and can call arbitrary programs, it’s crucial to inspect your project’s specific
Makefile to discover the option that it exposes to control where artefacts will be placed when make install is called,
and adjust the contents of the override-build script to reflect this. Failure to do so will frequently not result in a
build error because the artefacts will be installed in a standard location like /usr/local in the build system, which is
typically an LXD instance or a Multipass VM.

40 Chapter 2. How-to guides

CHAPTER

THREE

REFERENCE

This section of the documentation contains an in-depth description of Rockcraft’s components, commands and key-
words.

3.1 rockcraft.yaml

3.1.1 Part properties

after

Type: array of unique strings with at least 1 item

Step: build

Specifies a list of parts that a given part will be built after.

build-environment

Type: build-environment-grammar

Step: build

The environment variables to be defined in the build environment specified as a list of key-value pairs.

Example:

build-environment:
- MESSAGE: "Hello world"
- NAME: "Craft Parts"

build-packages

Type: grammar-array

Step: build

The system packages to be installed in the build environment before the build is performed. These are installed using
the host’s native package manager, such as apt or dnf, and they provide libraries and executables that the part needs
during the build process.

41

Rockcraft, Release 1.3.1

build-snaps

Type: grammar-array

Step: build

The snaps to be installed in the build environment before the build is performed. These provide libraries and executables
that the part needs during the build process.

organize

Type: ordered dictionary mapping strings to strings

Step: stage

Describes how files in the building area should be represented in the staging area.

In the following example, the hello.py file in the build area is copied to the bin directory in the staging area and
renamed to hello:

organize:
hello.py: bin/hello

override-build

Type: string

Step: pull

A string containing commands to be run in a shell instead of performing those defined by the plugin for the build step.

override-prime

Type: string

Step: pull

A string containing commands to be run in a shell instead of performing the standard actions for the prime step.

override-pull

Type: string

Step: pull

A string containing commands to be run in a shell instead of performing the standard actions for the pull step.

42 Chapter 3. Reference

Rockcraft, Release 1.3.1

override-stage

Type: string

Step: pull

A string containing commands to be run in a shell instead of performing the standard actions for the stage step.

parse-info

Type: string

Step: all

plugin

Type: string

Step: all steps

The plugin used to build the part. Available plugins include the following:

Name Note
ant Apache Ant
autotools Autotools
cmake CMake
dotnet .Net
dump Simple file unpacking
go Go
make Make
maven Apache Maven
meson Meson
nil No default actions
npm NPM
python Python package
rust Rust with Cargo
scons SCons

prime

Type: array of unique strings with at least 1 item

Step: prime

The files to copy from the staging area to the priming area, see Specifying paths.

3.1. rockcraft.yaml 43

https://ant.apache.org/
https://www.gnu.org/software/automake/
https://cmake.org/
https://github.com/dotnet/core
https://golang.org/
https://www.gnu.org/software/make/manual/make.html
https://maven.apache.org/
https://mesonbuild.com/
https://www.npmjs.com/
https://packaging.python.org/en/latest/guides/distributing-packages-using-setuptools/
https://crates.io/
https://scons.org/

Rockcraft, Release 1.3.1

source

Type: grammar-string

Step: pull

The location of the source code and data.

source-branch

Type: string

Step: pull

The branch in the source repository to use when pulling the source code.

source-checksum

Type: string

Step: pull

For plugins that use files, this key contains a checksum value to be compared against the checksum of the downloaded
file.

source-commit

Type: string

Step: pull

The commit to use to select a particular revision of the source code obtained from a repository.

source-depth

Type: integer

Step: pull

The number of commits in a repository’s history that should be fetched instead of the complete history.

source-subdir

Type: string

Step: pull

The subdirectory in the unpacked sources where builds will occur.

Note: This key restricts the build to the subdirectory specified, preventing access to files in the parent directory and
elsewhere in the file system directory structure.

44 Chapter 3. Reference

Rockcraft, Release 1.3.1

source-submodules

Type: array of unique strings with 0 or more items

Step: pull

The submodules to fetch in the source repository.

source-tag

Type: string

Step: pull

The tag to use to select a particular revision of the source code obtained from a repository.

source-type

Type: one of “deb”, “file”, “git”, “local”, “rpm”, “snap”, “tar”, “zip”

Step: pull

The type of container for the source code. If not specified, Craft Parts will attempt to auto-detect the source type. A
list of supported formats can be found in the craft_parts.sources file.

stage

Type: array of unique strings with at least 1 item

Step: stage

The files to copy from the building area to the staging area, see Specifying paths.

stage-packages

Type: grammar-array

Step: stage

The packages to install in the staging area for deployment with the build products. These provide libraries and executa-
bles to support the deployed part.

This keyword also support supports Chisel slices.

To install a package slice instead of the whole package, simply follow the Chisel convention <package-
Name>_<sliceName>.

NOTE: at the moment, it is not possible to mix packages and slices in the same stage-packages field.

3.1. rockcraft.yaml 45

https://github.com/canonical/chisel

Rockcraft, Release 1.3.1

stage-snaps

Type: grammar-array

Step: stage

The snaps to install in the staging area for deployment with the build products. These provide libraries and executables
to support the deployed part.

Summary of keys and steps

The following table shows the keys that are used in each build step. The plugin and parse-info keys apply to all
steps.

Pull Build Stage Prime
source after stage prime
source-checksum build-attributes stage-snaps
source-branch build-environment stage-packages
source-commit build-packages
source-depth build-snaps
source-submodules organize
source-subdir
source-tag
source-type
override-pull override-build override-stage override-prime

A Rockcraft project is defined in a YAML file named rockcraft.yaml at the root of the project tree in the filesystem.

This Reference section is for when you need to know which options can be used, and how, in this rockcraft.yaml
file.

3.1.2 Format specification

name

Type: string

Required: Yes

The name of the rock. This value must conform with Pebble’s format for layer files, meaning that the name:

• must start with a lowercase letter [a-z];

• must contain only lowercase letters [a-z], numbers [0-9] or hyphens;

• must not end with a hyphen, and must not contain two or more consecutive hyphens.

46 Chapter 3. Reference

Rockcraft, Release 1.3.1

title

Type: string

Required: No

The human-readable title of the rock. If omitted, defaults to name.

summary

Type: string

Required: Yes

A short summary describing the rock.

description

Type: string

Required: Yes

A longer, possibly multi-line description of the rock.

version

Type: string

Required: Yes

The rock version, used to tag the OCI image and name the rock file.

base

Type: One of ubuntu@20.04 | ubuntu@22.04 | ubuntu@24.04 | bare

Required: Yes

The base system image that the rock’s contents will be layered on. This is also the system that will be mounted and
made available when using Overlays. The special value bare means that the rock will have no base system at all, which
is typically used with static binaries or Chisel slices.

Note: The notation “ubuntu:<channel>” is also supported for some channels, but this format is deprecated and should
be avoided.

Note: Base ubuntu@24.04 is still unstable and under active development. To use it, build-base must be devel.

3.1. rockcraft.yaml 47

Rockcraft, Release 1.3.1

build-base

Type: One of ubuntu@20.04 | ubuntu@22.04 | devel

Required: Yes, if base is bare

The system and version that will be used during the rock’s build, but not included in the final rock itself. It comprises
the set of tools and libraries that Rockcraft will use when building the rock’s contents. This field is mandatory if base
is bare, but otherwise it is optional and defaults to the value of base.

Note: The notation “ubuntu:<channel>” is also supported for some channels, but this format is deprecated and should
be avoided.

Note: devel is a “special” value that means “the next Ubuntu version, currently in development”. This means that
the contents of this system changes frequently and should not be relied on for production rocks.

license

Type: string, in SPDX format

Required: Yes

The license of the software packaged inside the rock. This must match the SPDX format, but is case insensitive (e.g.
both MIT and mit are valid).

run-user

Type: string

Required: No

The default OCI user. It must be a supported shared user. Currently, the only supported shared user is “_daemon_”
(with UID/GID 584792). It defaults to “root” (with UID 0).

environment

Type: dict

Required: No

A set of key-value pairs specifying the environment variables to be added to the base image’s OCI environment.

Note: String interpolation is not yet supported so any attempts to dynamically define environment variables with $
will end in a project validation error.

48 Chapter 3. Reference

https://spdx.org/licenses/

Rockcraft, Release 1.3.1

services

Type: dict, following the Pebble Layer Specification format

Required: No

A list of services for the Pebble entrypoint. It uses Pebble’s layer specification syntax exactly, with each entry defining
a Pebble service. For each service, the override and command fields are mandatory, but all others are optional.

entrypoint-service

Type: string

Required: No

The optional name of the Pebble service to serve as the OCI entrypoint. If set, this makes Rockcraft extend ["/bin/
pebble", "enter", "--verbose"] with ["--args", "<serviceName>"]. The command of the Pebble service
must contain an optional argument that will become the OCI CMD.

Warning: This option must only be used in cases where the targeted deployment environment has unalterable
assumptions about the container image’s entrypoint.

checks

Type: dict, following the Pebble Layer Specification format

Required: No

A list of health checks that can be configured to restart Pebble services when they fail. It uses Pebble’s layer specification
syntax, with each entry corresponding to a check. Each check can be one of three types: http, tcp or exec.

platforms

Type: dict

Required: Yes

The set of architecture-specific rocks to be built. Supported architectures are: amd64, arm64, armhf, i386, ppc64el,
riscv64 and s390x.

Entries in the platforms dict can be free-form strings, or the name of a supported architecture (in Debian format).

Warning: All target architectures must be compatible with the architecture of the host where Rockcraft is being
executed (i.e. emulation is not supported at the moment).

3.1. rockcraft.yaml 49

https://github.com/canonical/pebble#layer-specification
https://github.com/canonical/pebble#layer-specification

Rockcraft, Release 1.3.1

platforms.<entry>.build-on

Type: list[string]

Required: Yes, if build-for is specified or if <entry> is not a supported architecture name.

Host architectures where the rock can be built. Defaults to <entry> if that is a valid, supported architecture name.

platforms.<entry>.build-for

Type: string | list[string]

Required: Yes, if <entry> is not a supported architecture name.

Target architecture the rock will be built for. Defaults to <entry> that is a valid, supported architecture name.

Note: At the moment Rockcraft will only build for a single architecture, so if provided build-for must be a single
string or a list with exactly one element.

parts

Type: dict

Required: Yes

The set of parts that compose the rock’s contents (see Parts).

Note: The fields entrypoint, cmd and env are not supported in Rockcraft. All rocks have Pebble as their entrypoint,
and thus you must use services to define your container application.

extensions

Type: list[string]

Required: No

Extensions to enable when building the ROCK.

Currently supported extensions:

• flask-framework

3.1.3 Example

name: hello
title: Hello World
summary: An Hello World rock
description: |

This is just an example of a Rockcraft project
for a Hello World rock.

version: latest
base: bare

(continues on next page)

50 Chapter 3. Reference

Rockcraft, Release 1.3.1

(continued from previous page)

build-base: ubuntu@22.04
license: Apache-2.0
run-user: _daemon_
environment:
FOO: bar

services:
hello:
override: replace
command: /usr/bin/hello -t
environment:
VAR1: value
VAR2: "other value"

platforms:
amd64:
armhf:
build-on: ["armhf", "arm64"]

ibm:
build-on: ["s390x"]
build-for: s390x

parts:
hello:
plugin: nil
stage-packages:
- hello

3.2 Rockcraft commands

3.2.1 build

Build artefacts defined for a part. If part names are specified only those parts will be built, otherwise all parts will be
built.

Usage

rockcraft build [options] <part-name>

Required

part-name
Optional list of parts to process.

3.2. Rockcraft commands 51

Rockcraft, Release 1.3.1

Options

--build-for
Set architecture to build for.

--debug
Shell into the environment if the build fails.

--destructive-mode
Build in the current host.

--platform
Set platform to build for.

--shell
Shell into the environment in lieu of the step to run.

--shell-after
Shell into the environment after the step has run.

--use-lxd
Build in a LXD container.

Global options

-h or --help
Show this help message and exit.

-q or --quiet
Only show warnings and errors, not progress.

-v or --verbose
Show debug information and be more verbose.

--verbosity
Set the verbosity level to ‘quiet’, ‘brief’, ‘verbose’, ‘debug’ or ‘trace’.

-V or --version
Show the application version and exit.

3.2.2 clean

Clean up artefacts belonging to parts. If no parts are specified, remove the packing environment.

Usage

rockcraft clean [options] <part-name>

52 Chapter 3. Reference

Rockcraft, Release 1.3.1

Required

part-name
Optional list of parts to process.

Options

--destructive-mode
Build in the current host.

--use-lxd
Build in a LXD container.

Global options

-h or --help
Show this help message and exit.

-q or --quiet
Only show warnings and errors, not progress.

-v or --verbose
Show debug information and be more verbose.

--verbosity
Set the verbosity level to ‘quiet’, ‘brief’, ‘verbose’, ‘debug’ or ‘trace’.

-V or --version
Show the application version and exit.

3.2.3 expand-extensions

Extensions listed rockcraft.yaml will be expanded and shown as output.

Usage

rockcraft expand-extensions [options]

Global options

-h or --help
Show this help message and exit.

-q or --quiet
Only show warnings and errors, not progress.

-v or --verbose
Show debug information and be more verbose.

--verbosity
Set the verbosity level to ‘quiet’, ‘brief’, ‘verbose’, ‘debug’ or ‘trace’.

-V or --version
Show the application version and exit.

3.2. Rockcraft commands 53

Rockcraft, Release 1.3.1

3.2.4 extensions

List available extensions and their corresponding bases.

Usage

rockcraft extensions [options]

Global options

-h or --help
Show this help message and exit.

-q or --quiet
Only show warnings and errors, not progress.

-v or --verbose
Show debug information and be more verbose.

--verbosity
Set the verbosity level to ‘quiet’, ‘brief’, ‘verbose’, ‘debug’ or ‘trace’.

-V or --version
Show the application version and exit.

3.2.5 init

Initialise a rockcraft project by creating a minimalist, yet functional, rockcraft.yaml file in the current directory.

Usage

rockcraft init [options]

Options

--name
The name of the rock; defaults to the directory name.

--profile
Use the specified project profile (defaults to ‘simple’).

Global options

-h or --help
Show this help message and exit.

-q or --quiet
Only show warnings and errors, not progress.

-v or --verbose
Show debug information and be more verbose.

--verbosity
Set the verbosity level to ‘quiet’, ‘brief’, ‘verbose’, ‘debug’ or ‘trace’.

54 Chapter 3. Reference

Rockcraft, Release 1.3.1

-V or --version
Show the application version and exit.

3.2.6 list-extensions

List available extensions and their corresponding bases.

Usage

rockcraft list-extensions [options]

Global options

-h or --help
Show this help message and exit.

-q or --quiet
Only show warnings and errors, not progress.

-v or --verbose
Show debug information and be more verbose.

--verbosity
Set the verbosity level to ‘quiet’, ‘brief’, ‘verbose’, ‘debug’ or ‘trace’.

-V or --version
Show the application version and exit.

3.2.7 overlay

Execute operations defined for each part on a layer over the base filesystem, potentially modifying its contents.

Usage

rockcraft overlay [options] <part-name>

Required

part-name
Optional list of parts to process.

Options

--build-for
Set architecture to build for.

--debug
Shell into the environment if the build fails.

--destructive-mode
Build in the current host.

3.2. Rockcraft commands 55

Rockcraft, Release 1.3.1

--platform
Set platform to build for.

--shell
Shell into the environment in lieu of the step to run.

--shell-after
Shell into the environment after the step has run.

--use-lxd
Build in a LXD container.

Global options

-h or --help
Show this help message and exit.

-q or --quiet
Only show warnings and errors, not progress.

-v or --verbose
Show debug information and be more verbose.

--verbosity
Set the verbosity level to ‘quiet’, ‘brief’, ‘verbose’, ‘debug’ or ‘trace’.

-V or --version
Show the application version and exit.

3.2.8 pack

Process parts and create the final artefact.

Usage

rockcraft pack [options] <part-name>

Required

part-name
Optional list of parts to process.

Options

--build-for
Set architecture to build for.

--debug
Shell into the environment if the build fails.

--destructive-mode
Build in the current host.

--output or -o
Output directory for created packages.

56 Chapter 3. Reference

Rockcraft, Release 1.3.1

--platform
Set platform to build for.

--use-lxd
Build in a LXD container.

Global options

-h or --help
Show this help message and exit.

-q or --quiet
Only show warnings and errors, not progress.

-v or --verbose
Show debug information and be more verbose.

--verbosity
Set the verbosity level to ‘quiet’, ‘brief’, ‘verbose’, ‘debug’ or ‘trace’.

-V or --version
Show the application version and exit.

3.2.9 prime

Prepare the final payload to be packed, performing additional processing and adding metadata files. If part names are
specified only those parts will be primed. The default is to prime all parts.

Usage

rockcraft prime [options] <part-name>

Required

part-name
Optional list of parts to process.

Options

--build-for
Set architecture to build for.

--debug
Shell into the environment if the build fails.

--destructive-mode
Build in the current host.

--platform
Set platform to build for.

--shell
Shell into the environment in lieu of the step to run.

3.2. Rockcraft commands 57

Rockcraft, Release 1.3.1

--shell-after
Shell into the environment after the step has run.

--use-lxd
Build in a LXD container.

Global options

-h or --help
Show this help message and exit.

-q or --quiet
Only show warnings and errors, not progress.

-v or --verbose
Show debug information and be more verbose.

--verbosity
Set the verbosity level to ‘quiet’, ‘brief’, ‘verbose’, ‘debug’ or ‘trace’.

-V or --version
Show the application version and exit.

3.2.10 pull

Download or retrieve artefacts defined for a part. If part names are specified only those parts will be pulled, otherwise
all parts will be pulled.

Usage

rockcraft pull [options] <part-name>

Required

part-name
Optional list of parts to process.

Options

--build-for
Set architecture to build for.

--debug
Shell into the environment if the build fails.

--destructive-mode
Build in the current host.

--platform
Set platform to build for.

--shell
Shell into the environment in lieu of the step to run.

58 Chapter 3. Reference

Rockcraft, Release 1.3.1

--shell-after
Shell into the environment after the step has run.

--use-lxd
Build in a LXD container.

Global options

-h or --help
Show this help message and exit.

-q or --quiet
Only show warnings and errors, not progress.

-v or --verbose
Show debug information and be more verbose.

--verbosity
Set the verbosity level to ‘quiet’, ‘brief’, ‘verbose’, ‘debug’ or ‘trace’.

-V or --version
Show the application version and exit.

3.2.11 stage

Stage built artefacts into a common staging area. If part names are specified only those parts will be staged. The default
is to stage all parts.

Usage

rockcraft stage [options] <part-name>

Required

part-name
Optional list of parts to process.

Options

--build-for
Set architecture to build for.

--debug
Shell into the environment if the build fails.

--destructive-mode
Build in the current host.

--platform
Set platform to build for.

--shell
Shell into the environment in lieu of the step to run.

3.2. Rockcraft commands 59

Rockcraft, Release 1.3.1

--shell-after
Shell into the environment after the step has run.

--use-lxd
Build in a LXD container.

Global options

-h or --help
Show this help message and exit.

-q or --quiet
Only show warnings and errors, not progress.

-v or --verbose
Show debug information and be more verbose.

--verbosity
Set the verbosity level to ‘quiet’, ‘brief’, ‘verbose’, ‘debug’ or ‘trace’.

-V or --version
Show the application version and exit.

3.2.12 version

Show the application version and exit

Usage

rockcraft version [options]

Global options

-h or --help
Show this help message and exit.

-q or --quiet
Only show warnings and errors, not progress.

-v or --verbose
Show debug information and be more verbose.

--verbosity
Set the verbosity level to ‘quiet’, ‘brief’, ‘verbose’, ‘debug’ or ‘trace’.

-V or --version
Show the application version and exit.

60 Chapter 3. Reference

Rockcraft, Release 1.3.1

3.2.13 Lifecycle commands

Lifecycle commands can take an optional parameter <part-name>. When a part name is provided, the command
applies to the specific part. When no part name is provided, the command applies to all parts.

build
Build artefacts defined for a part.

clean
Remove a part’s assets.

overlay
Create part layers over the base filesystem.

pack
Create the final artefact.

prime
Prime artefacts defined for a part.

pull
Download or retrieve artefacts defined for a part.

stage
Stage built artefacts into a common staging area.

3.2.14 Extension commands

expand-extensions
Expand extensions in snapcraft.yaml.

extensions
List available extensions for all supported bases.

list-extensions
List available extensions for all supported bases.

3.2.15 Other commands

init
Initialise a rockcraft project.

version
Show the application version and exit.

3.3 Extensions

Just as the Snapcraft extensions are designed to simplify Snap creation, Rockcraft extensions are crafted to expand and
modify the user-provided rockcraft project file, aiming to minimise the boilerplate code when initiating a new rock.

3.3. Extensions 61

Rockcraft, Release 1.3.1

3.3.1 The flask-framework extension

The Flask extension streamlines the process of building Flask application rocks.

It facilitates the installation of Flask application dependencies, including Gunicorn, in the rock image. Additionally, it
transfers your project files to /flask/app within the rock image.

A statsd-exporter is installed alongside the Gunicorn server to export Gunicorn server metrics.

3.3.2 The django-framework extension

The Django extension is similar to the flask-framework extension but tailored for Django applications.

3.4 Rockcraft plugins

This section contains an in-depth description of the plugins available in Rockcraft.

3.4.1 Dump plugin

The Dump plugin can be used for any project where you want to include existing files from somewhere and keep the
content as is. Its source can be a local directory, a remote repository, or a URL. Common use cases include:

• Include static files like scripts or media from a local directory.

• Download and unpack pre-compiled proprietary software from a remote URL.

• Use git to clone a remote SDK, dataset, or model.

Keywords

This plugin uses the common plugin keywords as well as those for sources.

You must specify at least the source keyword. The source-type keyword is optional, but recommended, as it is used to
specify how the source should be handled.

Dependencies

This plugin has no dependencies.

How it works

During the build step, the plugin performs the following actions:

• Check the source-type keyword to determine the type of the source if specified, otherwise, it will try to guess
the type based on the source.

• Download the file or clone the repository if the source is a remote location.

• Copy the file or directory if the source is a local location.

• Unpack the file if it is an archive specified by the source-type keyword.

• Copy all contents and preserve the directory structure to the part’s install directory.

62 Chapter 3. Reference

Rockcraft, Release 1.3.1

3.4.2 Maven plugin

The Maven plugin builds Java projects using the Maven build tool.

After a successful build, this plugin will:

• Create bin/ and jar/ directories in $CRAFT_PART_INSTALL.

• Find the java executable provided by the part and link it as $CRAFT_PART_INSTALL/bin/java.

• Hard link the .jar files generated in $CRAFT_PART_SOURCE to $CRAFT_PART_INSTALL/jar.

Keywords

In addition to the common plugin and sources keywords, this plugin provides the following plugin-specific keywords:

maven-parameters

Type: list of strings

Used to add additional parameters to the mvn package command line.

Environment variables

This plugin reads the http_proxy and https_proxy variables from the environment to configure Maven proxy access.
A comma-separated list of hosts that should not be accessed via proxy is read from the no_proxy environment variable.

Please refer to Configuring Apache Maven for a list of environment variables used to configure Maven.

Dependencies

The plugin expects Maven to be available on the system as the mvn executable, unless a part named maven-deps is
defined. In this case, the plugin will assume that this part will stage the mvn executable to be used in the build step.

Note that the Maven plugin does not make a Java runtime available in the target environment. This must be handled by
the developer when defining the part, according to each application’s runtime requirements.

3.4.3 Python plugin

The Python plugin can be used for Python projects where you would want to do any of the following things:

• Import Python modules with a requirements.txt file.

• Build a Python project that has a setup.py or pyproject.toml file.

• Install packages using pip.

3.4. Rockcraft plugins 63

https://maven.apache.org/configure.html

Rockcraft, Release 1.3.1

Keywords

This plugin uses the common plugin keywords as well as those for sources.

Additionally, this plugin provides the plugin-specific keywords defined in the following sections.

python-requirements

Type: list of strings

List of paths to requirements files.

python-constraints

Type: list of strings

List of paths to constraint files.

python-packages

Type: list

A list of dependencies to install from PyPI. If needed, pip, setuptools and wheel can be upgraded here.

Environment variables

This plugin also sets environment variables in the build environment. These are defined in the following sections.

PARTS_PYTHON_INTERPRETER

Default value: python3

The interpreter binary to search for in PATH.

PARTS_PYTHON_VENV_ARGS

Default value: (empty string)

Additional arguments for venv.

Dependencies

Since none of the bases that are available for rocks contain a default Python installation, including a Python interpreter
in Rockcraft projects is mandatory. The plugin also requires the venv module to create the virtual environment where
Python packages are installed at build time.

The easiest way to do this is to include the python3-venv package in the stage-packages of the part that uses the
Python plugin. This will pull in the default Python interpreter for the build-base, like Python 3.10 for Ubuntu 22.04.
However, other versions can be used by explicitly declaring them - here’s an example that uses python3.12-venv
from the Deadsnakes ppa:

64 Chapter 3. Reference

Rockcraft, Release 1.3.1

package-repositories:
- type: apt
ppa: deadsnakes/ppa
priority: always

parts:
my-part:
plugin: python
source: .
stage-packages: [python3.12-venv]

How it works

During the build step, the plugin performs the following actions:

• It creates a virtual environment directly into the ${CRAFT_PART_INSTALL} directory.

• It uses pip to install the required Python packages as configured in the python-requirements,
python-constraints and python-packages keywords.

• If the source contains a setup.py or pyproject.toml file, those files are used to install the dependencies
specified by the package itself.

3.4.4 Rust plugin

The Rust plugin can be used for Rust projects that use the Cargo build system.

Keywords

In addition to the common plugin and sources keywords, this plugin provides the following plugin-specific keywords:

rust-channel

Type: string Default: stable

Used to select which Rust channel or version to use. It can be one of “stable”, “beta”, “nightly” or a version number.
If you want to use a specific nightly version, use this format: "nightly-YYYY-MM-DD". If you don’t want this plugin
to install Rust toolchain for you, you can put "none" for this option.

rust-features

Type: list of strings

Features used to build optional dependencies. This is equivalent to the --features option in Cargo.

You can also use ["*"] to select all the features available in the project.

Note: This option does not override any default features specified by the project itself.

If you want to override the default features, please see the rust-no-default-features option below.

3.4. Rockcraft plugins 65

https://rust-lang.github.io/rustup/concepts/channels.html#channels

Rockcraft, Release 1.3.1

rust-no-default-features

Type: boolean Default: false

If this option is set to true, the default features specified by the project will be ignored.

You can then use the rust-features keyword to specify any features you wish to override.

rust-path

Type: list of strings Default: .

The path to the package root (that contains the Cargo.toml file). This is equivalent to the --manifest-path option
in Cargo.

rust-use-global-lto

Type: boolean Default: false

Whether to use global LTO. This option may significantly impact the build performance but reducing the final binary
size and improve the runtime performance. This will forcibly enable LTO for all the crates you specified, regardless of
whether the projects have the LTO option enabled in the Cargo.toml file.

This is equivalent to the lto = "fat" option in the Cargo.toml file.

If you want better runtime performance, see the Performance tuning section below.

rust-ignore-toolchain-file

Type: boolean Default: false

Whether to ignore the rust-toolchain.toml and rust-toolchain file. The upstream project can use this file to
specify which Rust toolchain to use and which component to install. If you don’t want to follow the upstream project’s
specifications, you can put true for this option to ignore the toolchain file.

rust-cargo-parameters

Type: list of strings Default: []

Append additional parameters to the Cargo command line.

rust-inherit-ldflags

Type: boolean Default: false

Whether to inherit the LDFLAGS from the environment. This option will add the LDFLAGS from the environment to
the Rust linker directives.

Cargo build system and Rust compiler by default do not respect the LDFLAGS environment variable. This option will
cause the craft-parts plugin to forcibly add the contents inside the LDFLAGS to the Rust linker directives by wrapping
and appending the LDFLAGS value to RUSTFLAGS.

66 Chapter 3. Reference

Rockcraft, Release 1.3.1

Note: You may use this option to tune the Rust binary in a classic Snap to respect the Snap linkage, so that the binary
will not find the libraries in the host filesystem.

Here is an example on how you might do this on core22:

parts:
my-classic-app:
plugin: rust
source: .
rust-inherit-ldflags: true
build-environment:
- LDFLAGS: >

-Wl,-rpath=\$ORIGIN/lib:/snap/core22/current/lib/$CRAFT_ARCH_TRIPLET_BUILD_FOR
-Wl,-dynamic-linker=$(find /snap/core22/current/lib/$CRAFT_ARCH_TRIPLET_BUILD_

→˓FOR -name 'ld*.so.*' -print | head -n1)

Environment variables

This plugin sets the PATH environment variable so the Rust compiler is accessible in the build environment.

Some environment variables may also influence the Rust compiler or Cargo build tool. For more information, see
Cargo documentation for the details.

Dependencies

By default this plugin uses Rust toolchain binaries from the Rust upstream. If this is not desired, you can set
rust-deps: ["rustc", "cargo"] and rust-channel: "none" in the part definition to override the default
behaviour.

Performance tuning

Warning: Keep in mind that due to individual differences between different projects, some of the optimisations
may not work as expected or even incur performance penalties. YMMV.

Some programs may even behave differently or crash if aggressive optimisations are used.

Many Rust programs boast their performance over similar programs implemented in other programming languages. To
get even better performance, you might want to follow the tips below.

• Use the rust-use-global-lto option to enable LTO support. This is suitable for most projects. However, analysing
the whole program during the build time requires more memory and CPU time.

• Specify codegen-units=1 in Cargo.toml to reduce LLVM parallelism. This may sound counter-intuitive,
but reducing code generator threads could improve the quality of generated machine code. This option will also
reduce the build time performance since the code generator uses only one thread per translation unit.

• Disable incremental=true in Cargo.toml to improve inter-procedural optimisations. Many projects may
have already done this for the release profile. You should check if that is the case for your project.

• (Advanced) Perform cross-language LTO. This requires installing the correct version of LLVM/Clang and setting
the right environment variables. You must know which LLVM version of your selected Rust toolchain is using.

3.4. Rockcraft plugins 67

https://doc.rust-lang.org/cargo/reference/environment-variables.html

Rockcraft, Release 1.3.1

For example, Rust 1.71 uses LLVM 16 because you can see it bundles a libLLVM-16-rust-1.71.1-stable.
so file in the lib directory. In this case, you want to install clang-16 and lld-16 from the Ubuntu archive.

– You will need to set these environment variables for Clang:

parts:
my-app:
plugin: rust
source: .
build-packages:
- clang-16
- lld-16

build-environment:
- CC: clang-16
- CXX: clang++-16
- CFLAGS: -flto=fat
- CXXFLAGS: -flto=fat
- RUSTFLAGS: "-Cembed-bitcode=yes -Clinker-plugin-lto -Clinker=clang-

→˓16 -Clink-arg=-flto -Clink-arg=-fuse-ld=lld"

For some projects that manipulate the object files during the build, you may also need:

export NM=llvm-nm-16
export AR=llvm-ar-16
export RANLIB=llvm-ranlib-16

You can refer to the rustc documentation for more information on the meaning of those options.

– You will need significantly more memory and CPU time for large projects to build and link. For instance,
Firefox under full LTO requires about 62 GiB of memory to pass the linking phase.

3.5 Parts and Steps

Parts and steps are the basic data types craft-parts will work with. Together, they define the lifecycle of a project (i.e.
how to process each step of each part in order to obtain the final primed result).

3.5.1 Parts

When the LifecycleManager is invoked, parts are defined in a dictionary under the parts key. If the dictionary
contains other keys, they will be ignored.

Permissions

Parts can declare read/write/execute permissions and ownership for the files they produce. This is achieved by adding
a permissions subkey in the specific part:

...
parts:
my-part:
...
permissions:
- path: bin/my-binary

(continues on next page)

68 Chapter 3. Reference

https://doc.rust-lang.org/rustc/codegen-options/index.html

Rockcraft, Release 1.3.1

(continued from previous page)

owner: 1111
group: 2222
mode: "755"

The permissions subkey is a list of permissions definitions, each with the following keys:

• path: a string describing the file(s) and dir(s) that this definition applies to. The path should be relative, and
supports wildcards. This field is optional and its absence is equivalent to "*", meaning that the definition applies
to all files produced by the part;

• owner: an integer describing the numerical id of the owner of the files. This field is optional in the general case
but mandatory if group is specified;

• group: an integer describing the numerical id of the group for the files. The semantics are otherwise the same
as owner, including being optional in the general case and mandatory if owner is specified;

• mode: string describing the desired permissions for the files as a number in base 8. This field is optional.

3.5.2 Steps

Steps are used to establish plan targets and in informational data structures such as StepInfo. They are defined by the
Step enumeration, containing entries for the lifecycle steps PULL, OVERLAY, BUILD, STAGE, and PRIME.

Step execution environment

Craft-parts defines the following environment for use during step processing and execution of user-defined scriptlets:

• CRAFT_ARCH_TRIPLET: The the machine-vendor-os platform triplet definition.

• CRAFT_TARGET_ARCH: The architecture we’re building for.

• CRAFT_PARALLEL_BUILD_COUNT: The maximum number of concurrent build jobs to execute.

• CRAFT_PROJECT_DIR: The path to the current project’s subtree in the filesystem.

• CRAFT_PART_NAME: The name of the part currently being processed.

• CRAFT_PART_SRC: The path to the part source directory. This is where sources are located after the PULL step.

• CRAFT_PART_SRC_WORK: The path to the part source subdirectory, if any. Defaults to the part source directory.

• CRAFT_PART_BUILD: The path to the part build directory. This is where parts are built during the BUILD step.

• CRAFT_PART_BUILD_WORK: The path to the part build subdirectory in case of out-of-tree builds. Defaults to the
part source directory.

• CRAFT_PART_INSTALL: The path to the part install directory. This is where built artefacts are installed after the
BUILD step.

• CRAFT_OVERLAY: The path to the part’s layer directory during the OVERLAY step if overlays are enabled.

• CRAFT_STAGE: The path to the project’s staging directory. This is where installed artefacts are migrated after the
STAGE step.

• CRAFT_PRIME: The path to the final primed payload directory after the PRIME step.

3.5. Parts and Steps 69

Rockcraft, Release 1.3.1

Step output directories

Some of the environment variables above reference directories that are the output locations for specific steps. These
are repeated below for fast reference:

• PULL:

– CRAFT_PART_SRC locates the source of the part.

– CRAFT_PART_SRC_WORK locates the source subdirectory if overridden.

• OVERLAY:

– CRAFT_OVERLAY locates the combined overlay output from all parts.

• BUILD:

– CRAFT_PART_INSTALL contains the location of the build output step. This directory is the expected
location of CARGO_INSTALL_ROOT for Rust, GOBIN for go or DESTDIR for make.

• STAGE:

– CRAFT_STAGE contains the expected location of all staged outputs.

• PRIME:

– CRAFT_PRIME contains the path of the primed payload directory. This directory is shared by all parts.

70 Chapter 3. Reference

https://doc.rust-lang.org/cargo/commands/cargo-install.html
https://pkg.go.dev/cmd/go#hdr-Compile_and_install_packages_and_dependencies
https://www.gnu.org/software/make/manual/make.html#DESTDIR

CHAPTER

FOUR

EXPLANATION

This section of the documentation covers the concepts used by Rockcraft and the motivations behind its development.

4.1 Why use Rockcraft?

Getting past the technical matters surrounding Rockcraft, from a higher perspective, you might be asking “but what is
this after all?” and “why do I need it?”.

Let’s then use this page to go a bit deeper into the concepts and definitions behind Rockcraft.

4.1.1 So why do I need Rockcraft?

Now, this is where things get interesting. To answer this question, we first need to look at the current state of the art
with respect to the existing container image offerings out there.

It is easy to find public studies (like Unit 42 / Znet and Snyk’s state of open source security report 2020) where the
findings state a concerning number of containers at risk deployed in cloud infrastructures.

In fact, both these studies and our own assessments (dated from December 2021) show that the most popular images
in Docker Hub contain known vulnerabilities, with Ubuntu being the only one without any critical or high ones.

71

https://www.zdnet.com/article/96-of-third-party-container-applications-deployed-in-cloud-infrastructure-contain-known-vulnerabilities-unit-42/
https://snyk.io/blog/10-docker-image-security-best-practices/

Rockcraft, Release 1.3.1

Sure, consumers could venture to fix these vulnerabilities themselves, but not only would this increase the cost and
proliferation of images, but it wouldn’t be easy to accomplish due to the lack of expertise in the subject matter. The
right approach is to actually fix the vulnerabilities at their source! And Canonical has already started doing this. If we
compare some of the Docker Official container images vs some of the ones maintained by Canonical, we can verify
that the latter have no high/critical vulnerabilities in them!

So this is where the motivation for a new generation of OCI images (aka rocks) starts - the need for more secure

72 Chapter 4. Explanation

Rockcraft, Release 1.3.1

container images! And while this need might carry the biggest weight in the container users’ demands, other values
come into play when selecting the best container image, such as:

• stability

• size

• compliance

• provenance

You can find these values and their relevance in this report.

This brings us to the problem statement behind rocks:

How might we redesign secure container images for Kubernetes developers and application maintainers,
considering the Top 10 Docker images are full of vulnerabilities, except Ubuntu?

A rock is:

• secure and stable: based on the latest and greatest Ubuntu releases;

• OCI-compliant: compatible with all the popular container management tools (Docker, Kubernetes, etc.);

• dependable: built on top of Ubuntu, with a predictable release cadence and timely security updates;

• production-grade: tested and secured by default.

Do I need to use Rockcraft?

If you want to build a proper rock, yes, we’d recommend you do. This is not to say you wouldn’t be able to build
rock-like container images with your own tools, but Rockcraft has been developed precisely to offer an easy way to
build production-grade container images.

Furthermore, Rockcraft is built on top of existing concepts and within the same family as Snapcraft and Charmcraft,
such that its adoption becomes seamless for those already used to building Snaps and Charms.

4.2 Chisel

Chisel is a software tool for extracting well-defined portions (aka slices) of Debian packages into a filesystem.

Using the analogy of a tool to carve and cut stone, Chisel is used in Rockcraft to sculpt minimal collections of files that
only include what is needed for the rock to function properly.

See Cut existing slices with Chisel for information about using the tool.

4.2.1 Package slices

Since Debian packages are simply archives that can be inspected, navigated and deconstructed, it is possible to define
slices of packages that contain minimal, complementary, loosely-coupled sets of files based on package metadata and
content. Such package slices are subsets of Debian packages, with their own content and set of dependencies to other
internal and external slices.

The use of package slices provides Rockcraft with the ability to build minimal container images from the wider set of
Ubuntu packages.

This image illustrates the simple case where, at a package level, package B depends on package A. However, there might
be files in A that B doesn’t actually need, but which are provided for convenience or completeness. By identifying the

4.2. Chisel 73

https://juju.is/cloud-native-kubernetes-usage-report-2021#selection-criteria-for-container-images
https://snapcraft.io/docs/snapcraft-overview
https://juju.is/docs/sdk/charmcraft
https://github.com/canonical/chisel

Rockcraft, Release 1.3.1

files in A that are actually needed by B, we can divide A into slices that serve this purpose. In this example, the files in
the package slice, A_slice3, are not needed for B to function. To make package B usable in the same way, it can also be
divided into slices.

With these slice definitions in place, Chisel is able to extract a highly-customised and specialised slice of the Ubuntu
distribution, which one could see as a block of stone from which we can carve and extract only the small and relevant
parts that we need to run our applications, thus keeping rocks small and less exposed to vulnerabilities.

Defining slices

A package’s slices can be defined via a YAML slice definitions file. Check the slice definitions reference for more
information about this file’s format.

Note: To find examples of existing slice definitions files, check the Chisel releases repository at https://github.com/
canonical/chisel-releases. Contributions are welcome and encouraged.

4.3 Overlay step

The component parts of a rock are built in a sequence of five separate steps: pull, overlay, build, stage and prime.

The overlay step is specific to rocks and is configured with overlay parameters. To learn more about pull, build, stage
and prime see Part properties

The overlay step provides the means to modify the base filesystem before the build step is applied. If
overlay-packages is used, those packages will be installed first. overlay-script will run the provided script in
this step. The location of the overlay is made available in the ${CRAFT_OVERLAY} environment variable. overlay
can be used to specify which files will be migrated to the next steps, and when omitted its default value will be "*".

4.3.1 Overlay Parameters

A part has three parameters that can be used to adjust how the overlay step works: overlay-packages,
overlay-script and overlay-filter. overlay-packages and overlay (the filter parameter) behave much
the same way as the related parameters on the STAGE step. overlay-script likewise behaves similarly to
override-stage, including having access to the craftctl command.

An example parts section with overlay parameters looks as follows:

parts:
part_with_overlay:
plugin: nil
overlay-packages:

- ed
overlay-script: |

rm -f ${CRAFT_OVERLAY}/usr/bin/vi ${CRAFT_OVERLAY}/usr/bin/vim*
rm -f ${CRAFT_OVERLAY}/usr/bin/emacs*
rm -f ${CRAFT_OVERLAY}/bin/nano

overlay:
- bin
- usr/bin

After running this part, the overlay layer (and the final package) will only contain ed as an editor, with vi/vim, emacs,
and nano all having been removed.

74 Chapter 4. Explanation

https://github.com/canonical/chisel/#slice-definitions
https://github.com/canonical/chisel-releases
https://github.com/canonical/chisel-releases

Rockcraft, Release 1.3.1

4.4 Rocks

Rocks are Ubuntu LTS-based container images that are designed to meet cloud-native software’s security, stability,
and reliability requirements.

Rocks comply with the Open Container Initiative’s (OCI) image format specification, and can be stored in any OCI-
compliant container registry (e.g. DockerHub, ECR, ACR,..) and used by any OCI-compliant tool (e.g. Docker,
Podman, Kubernetes,. . .).

Interoperability between rocks and other containers also extends to how container images are built, allowing rocks to
be used as bases for existing build recipes, such as Dockerfiles, for further customisation and development.

4.4.1 What sets rocks apart?

• Opinionated and consistent design: all rocks follow the same design, aiming to minimise your full-stack dis-
parity and adoption overhead, e.g.

– Pebble is the official entrypoint for all rocks, providing a predictable and powerful abstraction layer be-
tween the user and the container application;

– Rocks extend the OCI image information by including additional metadata inside each rock (e.g. at /.
rock/metadata.yaml), allowing container applications to easily inspect the properties of the image they
are running on, at execution time;

• User-centric experience: rocks are described in a declarative format and built on top of familiar and reliable
Ubuntu LTS images, offering an open and up-to-date user experience;

• Seamless chiselling experience: rocks can be effortlessly chiselled using off-the-shelf primitives, harnessing all
the advantages of “distroless” to deliver compact and secure Ubuntu-based container images.

4.4.2 Design

Given their compliance with the OCI image specification, all rocks are constituted by OCI metadata (like the image’s
index, manifest and configuration) plus the actual OCI layers with the container filesystem contents.

Typically, container users won’t be directly building or accessing the raw OCI components that form an image. However,
these are frequently used as the underlying source of truth when inspecting container images with tools like Docker or
skopeo. As an example, the command docker inspect will, in general, source the requested information from the
image’s OCI configuration.

On the other hand, the OCI layers are the literal filesystem contents that result from the user’s instructions at image
build time, and that can be accessed by the container application at runtime.

The following diagram depicts the different OCI components in the context of a rock, highlighting where the afore-
mentioned design features (like the Pebble entrypoint) fit in.

4.4. Rocks 75

https://opencontainers.org/
https://github.com/opencontainers/image-spec/blob/main/spec.md
https://github.com/opencontainers/image-spec/blob/main/spec.md
https://github.com/opencontainers/image-spec/blob/main/image-index.md
https://github.com/opencontainers/image-spec/blob/main/manifest.md
https://github.com/opencontainers/image-spec/blob/main/config.md
https://github.com/opencontainers/image-spec/blob/main/layer.md
https://docs.docker.com/
https://github.com/containers/skopeo
https://github.com/opencontainers/image-spec/blob/main/config.md
https://github.com/opencontainers/image-spec/blob/main/layer.md

Rockcraft, Release 1.3.1

4.5 Pebble

Important: Pebble is the default entrypoint for all rocks!

Similar to other well-known process managers such as supervisord, runit, or s6, Pebble is a service manager that enables
the seamless orchestration of a collection of local service processes as an organised set. The main difference is that
Pebble has been designed with custom-tailored features that significantly enhance the overall container experience,
making it the ideal candidate for the container’s init process (also known as the entrypoint, with PID=1).

4.5.1 Multiple processes in a container?

Containers’ best practices advocate the separation of concerns and the adoption of a single service per container. With
the introduction of Pebble as the rocks’ entrypoint, this principle is elevated to new heights:

if multiple processes rely on shared dependencies and are tightly coupled together (i.e. they serve a single
purpose and cannot be executed independently), then the best practice entails orchestrating them within
the same container, with Pebble as their manager.

This new notion addresses existing pain points arising from the excessive separation of concerns, which results in
numerous container images whose entrypoints lack the ability to gracefully handle the underlying child processes.
This is one of the main reasons behind the gradual shift in the best practices, as there is an increasing emphasis on
adopting init processes such as tini, s6-overlay, or Pebble.

76 Chapter 4. Explanation

https://github.com/canonical/pebble
https://github.com/canonical/pebble
https://github.com/canonical/pebble
https://github.com/krallin/tini
https://github.com/just-containers/s6-overlay
https://github.com/canonical/pebble

Rockcraft, Release 1.3.1

4.5.2 What to expect?

Pebble distinguishes itself from other similar tools (like tini and s6-overlay) by offering the following core features:

• client-server model behind a single binary: Pebble is injected into rocks as a single binary which acts both as
a daemon and a client to itself;

• declarative service definition: the Pebble service processes (or simply Pebble services) are declaratively defined
in YAML files called layers. Compared to imperative wrapper scripts (as suggested in the Docker documenta-
tion), this provides a much cleaner and less error-prone way to define the processes that should run inside the
container.

• services as first-class citizens: unlike wrapper scripts, Pebble treats services as manageable units with a defined
lifecycle and service-specific definitions for health monitoring, inter-service dependencies, restart policies, and
much more;

• layering: Pebble can stack multiple layers (represented as YAML files) into a single Pebble plan where all
services are defined. With this layering mechanism, existing services can be overridden or re-configured;

• container-optimised init process: as a rock’s PID 1, Pebble acts as an init process and thus offers:

– support for multiple child processes,

– reaping and subreaping,

– signal forwarding,

– graceful shutdown,

– log rotation,

– run the Pebble daemon and client commands in a single operation;

• consistent user experience: since every rock has Pebble as its entrypoint, a predictable and consistent user
experience is guaranteed;

• embedded utilities: regardless of the rock’s contents, Pebble offers a comprehensive suite of commands for
inspecting and interacting with the container. These commands are especially useful for Chiselled Rocks, as they
encompass functionalities such as listing and deleting files, creating directories, and inspecting Pebble services,
among others.

4.5.3 Creating services

Rockcraft follows the Pebble layer specification to the letter, with Pebble services defined in rockcraft.yaml. How to
convert an entrypoint to a Pebble layer provides an example of how to convert a Docker entrypoint to a Pebble layer.

4.6 From prime step to OCI layer

Rockcraft is a tool that creates OCI images using the same concepts and mechanisms that create snaps and charms: the
lifecycle language from Craft Parts. There is a significant difference between the way the Craft lifecycle works and the
OCI specification, and one of Rockcraft’s jobs is to bridge the gap between these two worlds. This page describes how
this is accomplished.

Note: It is not necessary to know these details to use the tool effectively, but they might illuminate some concepts and
help understand why the contents of a given rock are the way they are.

4.6. From prime step to OCI layer 77

https://github.com/krallin/tini
https://github.com/just-containers/s6-overlay
https://docs.docker.com/config/containers/multi-service_container/#use-a-wrapper-script
https://docs.docker.com/config/containers/multi-service_container/#use-a-wrapper-script
https://github.com/canonical/pebble#layer-specification

Rockcraft, Release 1.3.1

Consider the following snippet of a rockcraft.yaml that creates a rock containing a bare-bones Python 3.10 inter-
preter:

(...)
base: ubuntu@22.04

parts:
python-part:
plugin: nil
stage-packages:
- python3-minimal

This rock has Ubuntu 22.04 as its base and includes python3-minimal. Conceptually, this means that at build time
Craft Parts will pull in the python3-minimal Ubuntu package and whatever dependencies it needs to work. Indeed, if
we run rockcraft prime --shell-after, we can see the final contents ready to be packed in the prime directory
- this is the directory available at build-time through the ${CRAFT_PRIME} environment variable:

$ rockcraft prime --shell-after
$ cd ../prime
$ ls
bin etc lib lib64 sbin usr var
$ ls usr/bin/
debconf debconf-copydb debconf-show dpkg-divert ␣
→˓dpkg-realpath dpkg-trigger py3clean python3
debconf-apt-progress debconf-escape dpkg dpkg-maintscript-helper ␣
→˓dpkg-split perl py3compile python3.10
debconf-communicate debconf-set-selections dpkg-deb dpkg-query ␣
→˓dpkg-statoverride perl5.34.0 py3versions update-alternatives

As we can see, the prime directory has the contents of the python3-minimal package but also many of its dependen-
cies, direct and otherwise. Once the lifecycle is finished, Rockcraft packs the contents of the prime directory as a new
OCI layer, directly as if the prime directory were the filesystem root /.

Note: The following sections only apply to rocks with Ubuntu bases - bare rocks don’t need prime pruning nor
usrmerge handling.

4.6.1 Pruning the prime directory

One consequence of the inclusion of a stage-package’s dependencies is that the prime directory ends up having
many files that the base Ubuntu layer already has. This can be seen, for example, by using a tool like Dive:

What dive tells us is that about 60 MB worth of files are duplicated between the base Ubuntu 22.04 layer and the
“primed” layer: for example, the file /usr/lib/x86_64-linux-gnu/libcrypto.so.3 exists both in the base layer
(as part of the base Ubuntu system) and in the primed layer (pulled in by belonging to a package that is an indirect
dependency of python3-minimal).

Starting from version 1.1.0, Rockcraft “prunes” those files in the prime directory that also exist, with the same con-
tents, ownership and permissions, in the base layer. The end result is semantically the same, because the layers are
“stacked” together when creating containers from the rock. This “pruning” can be seen in the logs generated by Rock-
craft:

78 Chapter 4. Explanation

https://github.com/wagoodman/dive

Rockcraft, Release 1.3.1

(...)
Pruning: /root/prime/usr/lib/x86_64-linux-gnu/perl-base/unicore/lib/Sc/Gran.pl as it␣
→˓exists on the base
Pruning: /root/prime/usr/lib/x86_64-linux-gnu/perl-base/unicore/lib/Bc/EN.pl as it␣
→˓exists on the base
Pruning: /root/prime/usr/lib/x86_64-linux-gnu/perl-base/unicore/lib/PatSyn/Y.pl as it␣
→˓exists on the base
Pruning: /root/prime/usr/lib/x86_64-linux-gnu/perl-base/unicore/lib/Dt/Init.pl as it␣
→˓exists on the base
Pruning: /root/prime/usr/share/perl5/Debconf/Element/Noninteractive/Multiselect.pm as it␣
→˓exists on the base
(...)

4.6.2 usrmerge and the lifecycle layer

After pruning, the contents of the prime directory are packed as a new OCI layer. In concrete terms, this means that
the files and directories are added to a tar archive, which means that each file (or directory) gets added to the archive
together with the “destination” path that it should have when the archive is extracted.

In most cases, the file’s original path (relative to the root of the archive) and its destination path once extracted are the
same, so the file that exists in the prime directory as a/b/c/file.txt should be extracted as a/b/c/file.txt.

However, there are cases where this “destination” path should be changed. For example, consider again the contents of
the previous rock’s prime directory:

$ ls -l
total 5
drwxr-xr-x 2 root root 3 Dec 7 20:30 bin
drwxr-xr-x 9 root root 10 Dec 7 20:30 etc
drwxr-xr-x 4 root root 4 Dec 7 20:30 lib
drwxr-xr-x 2 root root 2 Dec 7 20:30 lib64
drwxr-xr-x 2 root root 2 Dec 7 20:30 sbin
drwxr-xr-x 7 root root 7 Dec 7 20:30 usr
drwxr-xr-x 4 root root 4 Dec 7 20:30 var

(continues on next page)

4.6. From prime step to OCI layer 79

https://github.com/opencontainers/image-spec/blob/main/layer.md

Rockcraft, Release 1.3.1

(continued from previous page)

$ ls bin/
pebble

So bin/ is a regular directory and contains the pebble binary, to serve as the rock’s entrypoint. However, consider
the base directory structure of an Ubuntu system:

$ ls -l /
total 84
lrwxrwxrwx 1 root root 7 ago 27 2022 bin -> usr/bin
drwxr-xr-x 5 root root 4096 nov 27 13:59 boot
drwxrwxr-x 2 root root 4096 ago 27 2022 cdrom
drwxr-xr-x 20 root root 5900 dez 7 19:57 dev
drwxr-xr-x 148 root root 12288 dez 7 15:15 etc
drwxr-xr-x 3 root root 4096 ago 27 2022 home
lrwxrwxrwx 1 root root 7 ago 27 2022 lib -> usr/lib
lrwxrwxrwx 1 root root 9 ago 27 2022 lib32 -> usr/lib32
lrwxrwxrwx 1 root root 9 ago 27 2022 lib64 -> usr/lib64
lrwxrwxrwx 1 root root 10 ago 27 2022 libx32 -> usr/libx32

bin is actually a symbolic link to usr/bin. This is the usrmerge, and it’s been present in Ubuntu for many years now.
Note that many other entries are also symlinks, like lib (to usr/lib) and lib64 (to usr/lib64).

These two filesystems interact in a surprising way when stacked as OCI layers. If bin/pebble is added to the layer’s
archive as bin/pebble plus an entry for the bin/ directory (which is a regular directory in the prime contents), once
the two layers are stacked together in a container the bin/ directory from the “prime layer” will overwrite the bin
-> usr/bin symlink from the “base layer”, which will make everything that assumed that the base binaries from
usr/bin/ would always be accessible through bin/ break.

This issue is made much worse if the instead of breaking bin/ we break the lib*/ symlinks. Consider:

$ ldd /bin/bash
linux-vdso.so.1 (0x00007ffdf2af4000)
libtinfo.so.6 => /lib/x86_64-linux-gnu/libtinfo.so.6 (0x00007f6053cbd000)
libc.so.6 => /lib/x86_64-linux-gnu/libc.so.6 (0x00007f6053a00000)
/lib64/ld-linux-x86-64.so.2 (0x00007f6053e6b000)

The bash binary links to multiple dynamic libraries, but has a hardcoded path to the /lib64/ld-linux-x86-64.
so.2 dynamic loader. This loader is the program that does the actual finding of dynamic dependencies at runtime,
and in an Ubuntu system its actual location is at /usr/lib64/ld-linux-x86-64.so.2. So if the /lib64 -> usr/
lib64 symlink is broken because the prime directory contains lib64 as a regular directory, then the vast majority
of the binaries in the final rock’s base system will simply fail to run because their loader is no longer available at
/lib64/ld-linux-x86-64.so.2.

To fix this, Rockcraft will take the base system into account when creating the archive for the prime layer. For instance,
when considering bin/pebble, Rockcraft will:

1. Skip adding bin/ as a regular directory, to avoid breaking the base system, and

2. Add bin/pebble as usr/bin/pebble in the layer archive.

This can be seen in the logs:

(...)
Creating new layer
(...)
Skipping /root/prime/bin because it exists as a symlink on the lower layer

(continues on next page)

80 Chapter 4. Explanation

https://wiki.debian.org/UsrMerge

Rockcraft, Release 1.3.1

(continued from previous page)

(...)
Adding to layer: /root/prime/bin/pebble as 'usr/bin/pebble'
(...)

Finally, as mentioned in the beginning none of this applies for rocks with bare bases, as there is no base system to
contain duplicates that need to be pruned or symbolic links that need to be taken into account.

4.7 Filesets

Filesets are named collections of files and directories that can be migrated between steps in the process of building a
part. They are used within Craft Parts to collect and filter the files and directories a part needs in its stage and prime
processing steps.

Tools that depend on Craft Parts can use filesets to simplify and automate migration of files and directories between
build steps. Users of those tools may need to know about filesets if they need to adjust the contents of the packages
that the tools produce.

4.7.1 Fileset names

Internally, Craft Parts uses the overlay, stage and prime filesets to migrate files from all parts into the corresponding
steps. For example, the stage fileset refers to all the files and directories that will be moved into the staging area ready
for the stage step to be run.

4.7.2 Defining filesets

Filesets are defined using the craft_parts.executor.Fileset class which is used to perform operations on lists
of file paths. This accepts a string containing the name of the fileset and a list of strings containing the file paths.

Filesets are defined for individual parts. The scope of each fileset is the part it is defined in. Filesets defined in one part
cannot be used by another part, and filesets cannot be shared between parts.

Specifying paths

The paths used in filesets specify locations relative to the working directory where they will be used. Absolute paths
cannot be used.

Paths can specify single files or directories, such as these examples:

• usr/bin/hello

• usr/share

They can also contain wildcards to select multiple files and directories, such as these:

• usr/bin/*

• usr/lib/**/*.so*

The second of these examples selects all the shared libraries in all nested directories inside the usr/lib directory.

Filesets can also exclude files and directories. This is done by prefixing a path with the - character, as in these examples:

• -usr/bin/hello

• -usr/share/**/*.gz

4.7. Filesets 81

Rockcraft, Release 1.3.1

The second example selects and discards gzipped files in all nested directories inside the usr/share directory.

4.7.3 Using filesets

Built-in filesets for the stage and prime steps are both applied to the directory containing the artefacts from the build
step. These are used to specify the files and directories to migrate to the stage and prime steps.

The contents of the filesets for these steps are specified using the stage and prime properties when defining a part.

The order in which paths are defined in a fileset is not important. The paths are collected so that all files and directories
to be included are first located, then paths that exclude files and directories are used to filter out those that are not
needed.

4.7.4 Summary

When defined:

• Filesets specify named collections of files and directories using file paths that can contain wildcards. Only relative
paths are allowed.

• They can both include and exclude sets of files and directories.

• They are defined for a given part, not for multiple parts.

When used:

• Filesets are used at the start of a step to collect and filter artefacts from an earlier step.

• Their file paths are applied to the directory containing the artefacts from the earlier step.

• All files and directories included by filesets are first located, then filtered by the filesets that exclude paths.

4.8 Parts

In the Craft Parts framework, parts are descriptions of the components to be built and prepared for deployment in a
payload, either individually or as part of a larger project containing many components.

When the Craft Parts framework is used to process a part on behalf of a tool or library, it performs some or all of the
steps described in the parts lifecycle:

1. The pull step pulls the source code and dependencies from locations defined in the part and places them into a
package cache.

2. The overlay step unpacks them into a base file system chosen from a collection of standard file system images.

3. The build step runs a suitable build tool for the sources to compile a set of build products or artefacts.

4. The stage step copies the build products for the part into a common area for all parts in a project.

5. The prime step copies the files to be deployed into an area for further processing.

Not all of these steps may be needed for every use case, and tools that use the Craft Parts framework can skip those that
are not appropriate for their purposes.

Tools like Snapcraft and Charmcraft that use the concepts of parts to describe a build process typically accept speci-
fications of parts in YAML format. This allows each part to be described in a convenient, mostly-declarative format.
Libraries that use parts may use the underlying data structures to describe them.

82 Chapter 4. Explanation

https://snapcraft.io/docs/snapcraft-overview
https://juju.is/docs/sdk/charmcraft

Rockcraft, Release 1.3.1

4.8.1 Describing a part

Each part contains all the required information about a specific component, and is organised like a dictionary. Each
piece of information is accessed by name using a property.

Generally, each part includes information about the following:

• Its source (where it is obtained from)

• Its build dependencies (snaps and packages)

• The build process

• How build artefacts are handled

Each of these are described in the following sections.

Source

The source for a part is described using the source property. This specifies a location where the source code or other
information is to be pulled from. This may be a repository on a remote server, a directory on the build host, or some
other location.

Additional properties are used to fine-tune the specification so that a precise description of the source location can be
given, and also to specify the type of source to be processed.

Where the type of the source information cannot be automatically determined, the source-type property is used to
explicitly specify the source format. This influences the way in which the source code or data is processed. A list
of supported formats can be found in the craft_parts.sources file. These include repository types, such as git,
archive formats such as zip, and local for files in the local file system.

If the source type represents a file, the source-checksum property can be used to provide a checksum value to be
compared against the checksum of the downloaded file.

Parts with source types that describe repositories can also use additional properties to accurately specify where source
code is found. The source-branch, source-commit and source-tag properties allow sources to be obtained from a
specific branch, commit or tag.

Since some repositories can contain large amounts of data, the source-depth property can be used to specify the number
of commits in a repository’s history that should be fetched instead of the complete history. For repositories that use
submodules, the source-submodules property can be used to fetch only those submodules that are needed.

The source-subdir property specifies the subdirectory in the unpacked sources where builds will occur. Note: This
property restricts the build to the subdirectory specified, preventing access to files in the parent directory and elsewhere
in the file system directory structure.

Build dependencies

The dependencies of a part are described using the build-snaps and build-packages properties. These specify lists of
snaps and system packages to be installed before the part is built. If a part depends on other parts, the after property is
used to specify these – see Defining the build order.

Snaps are referred to by the names that identify them in the Snap Store and can also include the channel information
so that specific versions of snaps are used. For example, the juju snap could be specified as juju/stable, juju/2.
9/stable or juju/latest/stable to select different versions.

System packages are referred to by the names that identify them on the host system, and they are installed using the
host’s native package manager, such as apt or dnf.

4.8. Parts 83

Rockcraft, Release 1.3.1

For example, a part that is built against the SDL 2 libraries could include the libsdl2-dev package in the build-
packages property.

Build process

Each part specifies the name of a plugin using the plugin property to describe how it should be built. The available
plugins are provided by the modules in the craft_parts.plugins package.

Plugins simplify the process of building source code written in a variety of programming languages using appropriate
build systems, libraries and frameworks. If a plugin is not available for a particular combination of these attributes,
a basic plugin can be used to manually specify the build actions to be taken, using the override-build property. This
property can also be used to replace or extend the build process provided by a plugin.

When a plugin is used, it exposes additional properties that can be used to define behaviour that is specific to the
type of project that the plugin supports. For example, the cmake plugin provides the cmake-parameters and
cmake-generator properties that can be used to configure how cmake is used in the build process.

The build-environment property defines assignments to shell environment variables in the build environment. This is
useful in situations where the build process of a part needs to be fine-tuned and can be configured by setting environment
variables.

The result of the build step is a set of build artefacts or products that are the same as those that would be produced by
manually compiling or building the software.

Build artefacts

At the end of the build step, the build artefacts can be organised before the stage step is run.

The organize property is used to customise how files are copied from the building area to the staging area. It defines
an ordered dictionary that maps paths in the building area to paths in the staging area.

After the build step, the stage step is run to collect the artefacts from the build into a common staging area for all parts.
Additional snaps and system packages that need to be deployed with the part are specified using the stage-snaps and
stage-packages properties. Files to be deployed are specified using the stage property.

In the final prime step, the files needed for deployment are copied from the staging area to the priming area. During
this step the prime property is typically used to exclude files in the staging area that are not required at run-time. This
is especially useful for multi-part projects that include their own compilers or development tools.

Defining the build order

If a part depends on other parts in a project as build dependencies then it can use the after property to define this
relationship. This property specifies a list containing the names of parts that it will be built after. The parts in the list
will be built and staged before the part is built.

This is covered in detail in Part processing order.

84 Chapter 4. Explanation

Rockcraft, Release 1.3.1

4.8.2 How parts are built

As described in Lifecycle details, parts are built in a sequence of steps: pull, overlay, build, stage and prime.

A part is built in a clean environment to ensure that only the base file system and its dependencies are present, avoiding
contamination from partial builds and side effects from other builds. The environment is a file system in a container
where the root user’s home directory is populated with a number of subdirectories and configured to use snaps.

Initially, before the pull step is run, the working directory contains a project directory containing the files for the
project to be built.

The pull step

When the pull step is run the sources are obtained using the source definitions for each part. After the step, the working
directory contains a state file to manage the state of the build and a number of subdirectories:

• parts is where individual parts for the project are prepared for build. The directory for each part in the parts
directory contains src, build and install directories that will be used during the build step.

• prime will contain the finished build product later in the process.

• project contains the original, unmodified project files.

• stage will contain staged files after a build, before they are primed.

The standard actions for the pull step can be overridden or extended by using the override-pull key to describe a series
of actions.

The build step

When the build step is run, each part in the parts subdirectory is processed in the order described in the build order.
The plugin for the part will use the appropriate build system to build the part in its build subdirectory, using a copy
of the files in its src subdirectory, and install the result in the part’s install subdirectory. The files in the install
directory will be organised according to the rules in the part’s organize property.

After the build step is run, the directory for each part in the parts directory will contain updated build and install
directories. The build directory will contain the build products, and the install directory will contain the files to
be included in the payload.

Parts that depend on other parts will be built after their dependencies have been built and staged.

The stage step

When the stage step is run for a part, the contents of its install directory are copied into the common stage directory.
Additionally, dependencies specified by the stage-packages and stage-snaps properties of the part are also unpacked
into the stage directory.

The result is that stage directory can contain the files needed for the final payload as well as resources for other parts.
If other parts need a part, such as a compiler, to be built and staged before they can be built, their build steps will run
after the stage step for the part they depend on.

4.8. Parts 85

Rockcraft, Release 1.3.1

The prime step

When the prime step is run for a part, the contents of the common stage directory are filtered using the rules in the
prime property and copied into the prime directory.

In a multi-part project the stage directory may contain resources that were required to build certain parts, or the build
products may include files that are not needed at run-time. Using a separate prime directory in a separate prime step
makes it possible to apply a filter to the build products.

4.9 Lifecycle details

Each part is built in five separate steps, each with its own input and output locations:

1. PULL — The source and external dependencies (such as package dependencies) for the part are retrieved from
their stated location and placed into a package cache area.

2. OVERLAY — Any overlay packages are installed in an overlay of the filesystem base, and the overlay script is run.
Finally, any overlay filters are applied.

3. BUILD — The part is built according to the particular part plugin and build override.

4. STAGE — The specified outputs from the BUILD step are copied into a unified staging area for all parts.

5. PRIME — The specified files are copied from the staging area to the priming area for use in the final payload.
This is distinct from STAGE in that the STAGE step allows files that are used in the BUILD steps of dependent parts
to be accessed, while the PRIME step occurs after all parts have been staged.

4.9.1 Step order

While each part’s steps are guaranteed to run in the order above, they are not necessarily run immediately following
each other, especially if multiple parts are included in a project. While specifics are implementation-dependent, the
general rules for combining parts are:

1. PULL all parts before running further steps.

2. OVERLAY parts in their processing order (defined below).

3. BUILD any unbuilt parts whose dependencies have been staged. If a part has no dependencies, this part is built
in the first iteration.

4. STAGE any newly-built parts.

5. Repeat the BUILD and STAGE steps until all parts have been staged.

6. PRIME all parts.

Part processing order

The processing of various parts is ordered based on dependencies. Circular dependencies are not permitted between
parts. The ordering rules are as follows:

1. Parts are ordered alphabetically by name

2. Any part that requires another part (using the after key) will move that dependency ahead of the declaring part.

NOTE: This means that renaming parts and adding, modifying or removing after keys for parts can change the order.

In the example below, the parts will run each stage, ordering the parts alphabetically at each stage (even though C is
listed before B):

86 Chapter 4. Explanation

Rockcraft, Release 1.3.1

parts:
A:
plugin: nil

C:
plugin: nil

B:
plugin: nil

craft_parts output

Execute: Pull A
Execute: Pull B
Execute: Pull C
Execute: Overlay A
Execute: Overlay B
Execute: Overlay C
Execute: Build A
Execute: Build B
Execute: Build C
Execute: Stage A
Execute: Stage B
Execute: Stage C
Execute: Prime A
Execute: Prime B
Execute: Prime C

However, if parts specify dependencies, both the build and stage steps of a dependency will be moved ahead of the
dependent part in addition to the parts being reordered within a step:

parts:
A:
plugin: nil
after: [C]

C:
plugin: nil

B:
plugin: nil

craft_parts output

Execute: Pull C
Execute: Pull A
Execute: Pull B
Execute: Overlay C
Execute: Overlay A
Execute: Overlay B
Execute: Build C
Execute: Stage C (required to build 'A')
Execute: Build A
Execute: Build B
Execute: Stage A
Execute: Stage B
Execute: Prime C

(continues on next page)

4.9. Lifecycle details 87

Rockcraft, Release 1.3.1

(continued from previous page)

Execute: Prime A
Execute: Prime B

4.9.2 Lifecycle processing diagram

88 Chapter 4. Explanation

Rockcraft, Release 1.3.1

4.9.3 Further Information

Further information can be found in the Snapcraft parts lifecycle documentation.

4.10 Dump Plugin

The dump plugin is a simple plugin that by default is equivalent to running the following command from the source
directory:

cp --archive --link --no-dereference . "${CRAFT_PART_INSTALL}"

The source property is the key to this plugin. With some additional properties, they define the location where to get
the files from, or which branch, tag, and/or commit to clone if it is a repository.

If you are not using the source files directly in the final payload, but want to run some custom commands to generate
them, then you should use the nil plugin instead to avoid copying any unnecessary files.

Combining the dump plugin with the part properties allows extending the behavior to create new files, modify existing
files, and/or filter files for the final payload. For example, it could be used with the override-build, to convert file
formats.

The plugin can also be used with the organize to reorganize the files in the final payload. Like keep only libraries and
exclude the binaries and headers from SDKs.

Tutorials Get started - become familiar with Rockcraft by containerising different software applications as rocks.

How-to guides Step-by-step guides - learn key operations, ranging from creating and cutting slices to migrating and
publishing rocks.

Reference Technical information - understand how to use every field in rockcraft.yaml.

Explanation Discussion and clarification - explore Rockcraft’s lifecycle and how a rock gets packed under the hood.

4.10. Dump Plugin 89

https://snapcraft.io/docs/parts-lifecycle

Rockcraft, Release 1.3.1

90 Chapter 4. Explanation

CHAPTER

FIVE

PROJECT AND COMMUNITY

Rockcraft is a member of the Canonical family. It’s an open source project that warmly welcomes community projects,
contributions, suggestions, fixes and constructive feedback.

• Ubuntu Rocks Discourse

• Rocks Community on Matrix

• Ubuntu Code of Conduct

• Canonical contributor license agreement

91

https://discourse.ubuntu.com/c/rocks/117
https://matrix.to/#/
https://ubuntu.com/community/code-of-conduct
https://ubuntu.com/legal/contributors

	Tutorials
	Create a “Hello World” rock
	Prerequisites
	Install Rockcraft
	Project Setup
	Pack the rock with Rockcraft
	Run the rock in Docker

	Install slices in a rock
	Prerequisites
	Install Rockcraft
	Project Setup
	Pack the rock with Rockcraft
	Run the rock in Docker

	Containerise a PyPI package
	Prerequisites
	Project Setup
	Pack the rock with Rockcraft
	Run the rock in Docker
	Explore the running container

	Bundle a Node.js app within a rock
	Prerequisites
	Install Rockcraft
	Project Setup
	Pack the rock with Rockcraft
	Run the rock in Docker
	References

	How-to guides
	How to get started - quick guide
	Getting started
	Requirements
	Choose a Rockcraft release
	Installation steps
	Testing Rockcraft

	Chisel
	Cut existing slices with Chisel
	How to create a package slice for Chisel
	Make sure the slice definition doesn’t exist yet
	Structure of a slice definitions file
	Find the dependencies of your package
	Create your slice definition

	How to install a custom package slice
	How to publish a slice definition

	Documentation
	How to contribute to Rockcraft documentation
	Tools and markup
	Documentation structure
	Including code and commands

	Build the documentation
	Making a contribution
	Report issues
	Propose changes

	How to build the documentation

	Rocks
	How to use Rockcraft’s GitHub Action
	How to convert an entrypoint to a Pebble layer
	Reference entrypoint
	Design the Pebble services
	Build the rock

	Publish a rock to a registry
	Prerequisites
	Push a rock to Docker Hub

	Migrate a popular Docker image to a chiselled rock
	Prerequisites
	Install Rockcraft
	Project Setup
	Convert Dockerfile to rockcraft.yaml file
	Pack the Chiselled Rock with Rockcraft
	Test the rock
	Conclusion

	Use the flask-framework extension
	Managing project files with the flask extension
	Use the django-framework extension
	Managing project files with the Django extension
	Including local files and remote resources
	Example: To include a local directory and move files to the correct locations
	Example: To include a remote third-party deb package from a URL
	Example: To include a remote third-party pre-compiled archive from a URL
	Example: To include a remote git repository with a specific branch

	Overriding the default build
	Determine that you do need to use override-build
	Ensure you place the built artefacts in the correct place

	Reference
	rockcraft.yaml
	Part properties
	after
	build-environment
	build-packages
	build-snaps
	organize
	override-build
	override-prime
	override-pull
	override-stage
	parse-info
	plugin
	prime
	source
	source-branch
	source-checksum
	source-commit
	source-depth
	source-subdir
	source-submodules
	source-tag
	source-type
	stage
	stage-packages
	stage-snaps
	Summary of keys and steps

	Format specification
	name
	title
	summary
	description
	version
	base
	build-base
	license
	run-user
	environment
	services
	entrypoint-service
	checks
	platforms
	platforms.<entry>.build-on
	platforms.<entry>.build-for
	parts
	extensions

	Example

	Rockcraft commands
	build
	Usage
	Required
	Options
	Global options

	clean
	Usage
	Required
	Options
	Global options

	expand-extensions
	Usage
	Global options

	extensions
	Usage
	Global options

	init
	Usage
	Options
	Global options

	list-extensions
	Usage
	Global options

	overlay
	Usage
	Required
	Options
	Global options

	pack
	Usage
	Required
	Options
	Global options

	prime
	Usage
	Required
	Options
	Global options

	pull
	Usage
	Required
	Options
	Global options

	stage
	Usage
	Required
	Options
	Global options

	version
	Usage
	Global options

	Lifecycle commands
	Extension commands
	Other commands

	Extensions
	The flask-framework extension
	The django-framework extension

	Rockcraft plugins
	Dump plugin
	Keywords
	Dependencies
	How it works

	Maven plugin
	Keywords
	maven-parameters

	Environment variables
	Dependencies

	Python plugin
	Keywords
	python-requirements
	python-constraints
	python-packages

	Environment variables
	PARTS_PYTHON_INTERPRETER
	PARTS_PYTHON_VENV_ARGS

	Dependencies
	How it works

	Rust plugin
	Keywords
	rust-channel
	rust-features
	rust-no-default-features
	rust-path
	rust-use-global-lto
	rust-ignore-toolchain-file
	rust-cargo-parameters
	rust-inherit-ldflags

	Environment variables
	Dependencies
	Performance tuning

	Parts and Steps
	Parts
	Permissions

	Steps
	Step execution environment
	Step output directories

	Explanation
	Why use Rockcraft?
	So why do I need Rockcraft?
	Do I need to use Rockcraft?

	Chisel
	Package slices
	Defining slices

	Overlay step
	Overlay Parameters

	Rocks
	What sets rocks apart?
	Design

	Pebble
	Multiple processes in a container?
	What to expect?
	Creating services

	From prime step to OCI layer
	Pruning the prime directory
	usrmerge and the lifecycle layer

	Filesets
	Fileset names
	Defining filesets
	Specifying paths

	Using filesets
	Summary

	Parts
	Describing a part
	Source
	Build dependencies
	Build process
	Build artefacts
	Defining the build order

	How parts are built
	The pull step
	The build step
	The stage step
	The prime step

	Lifecycle details
	Step order
	Part processing order

	Lifecycle processing diagram
	Further Information

	Dump Plugin

	Project and community

